Амд атлон 64 х2 какая материнка подойдет. Выбор материнской платы

Athlon 64 x2 модели 5200+ позиционировался производителем как двухъядерное решение среднего уровня на базе АМ2. Именно на его примере и будет изложен порядок разгона данного семейства устройств. Запас прочности у него достаточно неплохой, и при наличии соответствующих комплектующих можно было получить вместо него чипы с индексами 6000+ или 6400+.

Смысл разгона ЦПУ

Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат - конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.

Позиционирование

Характеристики процессора AMD Athlon 64 x2 явно указывают на то, что он относился к среднему сегменту двухъядерных чипов. Были и менее производительные решения - 3800+ и 4000+. Это начальный уровень. Ну а выше в иерархии находились ЦПУ с индексами 6000+ и 6400+. Первые две модели процессоров теоретически можно было разогнать и получить из них 5200+. Ну а сам 5200+ можно было модифицировать до 3200 МГц, и за счет этого получить вариацию уже 6000+ или даже 6400+. Причем технические параметры у них были практически идентичными. Единственное что могло изменяться, так это количество кэша второго уровня и технологический процесс. Как результат уровень их производительности после разгона практически не отличался. Вот и получалось, что при меньшей стоимости конечный владелец получал более производительную систему.

Технические характеристики чипа

Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.

Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс - с 90 нм до 65 нм.

Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.

Сокет

Процессор AMD Athlon 64 x2 модели 5200+ устанавливался в сокет АМ2. Второе его название - сокет 940. Электрически и в отношении программного обеспечения он совместим с решениями на базе АМ2+. Соответственно, приобрести для него материнскую плату пока еще возможно. Но вот сам ЦПУ уже купить достаточно сложно. Это неудивительно: процессор появился в продаже в 2007 году. С тех пор успело уже поменяться три поколения устройств.

Подбор материнской платы

Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные. Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего. Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.

Система охлаждения

Разгон процессора AMD Athlon 64 x2 невозможен без качественной системы охлаждения. Тот кулер, который идет в коробочной версии данного чипа, не подходит для этих целей. Он рассчитан на фиксированную тепловую нагрузку. При увеличении производительности ЦПУ его тепловой пакет возрастает, и штатная система охлаждения уже не будет справляться. Поэтому нужно покупать более продвинутую, с улучшенными техническими характеристиками. Можно порекомендовать для этих целей использовать кулер CNPS9700LED от Zalman. При наличии его данный процессор можно смело разгонять до 3100-3200 МГц. При этом особых проблем с перегревом ЦПУ точно не будет.

Термопаста

Еще один важный компонент, который нужно учитывать перед тем, AMD Athlon 64 x2 5200 +, это термопаста. Ведь чип будет функционировать не в режиме штатной нагрузки, а в состоянии увеличенной производительности. Соответственно, к качеству термопасты выдвигаются более жесткие требования. Она должна обеспечивать улучшенный теплоотвод. Для этих целей рекомендуется заменить штатную термопасту на КПТ-8, которая отлично подойдет для условий разгона.

Корпус

Процессор AMD Athlon 64 x2 5200 будет работать с увеличенной температурой в процессе разгона. В некоторых случаях она может подниматься до 55-60 градусов. Чтобы компенсировать эту увеличенную температуру, одной качественной замены термопасты и системы охлаждения будет недостаточно. Также нужен корпус, в котором воздушные потоки могли бы хорошо циркулировать, а за счет этого обеспечивалось бы дополнительное охлаждение. То есть внутри системного блока должно быть как можно больше свободного пространства, и это бы позволило за счет конвекции обеспечить охлаждение компонентов компьютера. Еще лучше будет, если в нем будут установлены дополнительные вентиляторы.

Процесс разгона

Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.

  1. При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
  2. Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
  3. Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
  4. Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
  5. Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
  6. На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
  7. Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
  8. Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.

Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.

Проверка стабильности системы

Не только максимальная температура процессора AMD Athlon 64 x2 может привести к нестабильной работе компьютерной системы. Причина может быть вызвана рядом дополнительных факторов. Поэтому в процессе разгона рекомендуется проводить комплексную проверку надежности работы ПК. Лучше всего для решения этой задачи подходит программа Everest. Именно с ее помощью и можно проверить надежность и стабильность работы компьютера в процессе разгона. Для этого лишь достаточно после каждых внесенных изменений и после окончания загрузки ОС запускать эту утилиту и проверять состояние аппаратных и программных ресурсов системы. Если какое-то значение выходит за допустимые границы, то нужно перезагружать компьютер и возвращаться к предыдущим параметрам, а затем заново все тестировать.

Контроль системы охлаждения

Температура процессора AMD Athlon 64 x2 зависит от работы системы охлаждения. Поэтому по окончании процедуры разгона необходимо проверить стабильность и надежность работы кулера. Для этих целей лучше всего использовать программу SpeedFAN. Она и бесплатная, и уровень ее функциональности достаточный. Скачать ее из Интернета и установить на ПК не составит особого труда. Далее ее запускаем и периодически, в течение 15-25 минут, контролируем количество оборотов кулера процессора. Если это число стабильно и не уменьшается, то все в порядке с системой охлаждения ЦПУ.

Температура чипа

Рабочая температура процессора AMD Athlon 64 x2 в штатном режиме должна изменяться в диапазоне от 35 до 50 градусов. В процессе разгона этот диапазон будет уменьшаться в сторону последнего значения. На определенном этапе температура ЦПУ может даже превысить 50 градусов, и в этом ничего страшного нет. Максимально допустимое значение - 60 ˚С, приблизившись к которому, рекомендуется прекратить какие-либо эксперименты с разгоном. Более высокое значение температуры может негативно сказаться на полупроводниковом кристалле процессора и вывести его из строя. Для проведения замеров в процессе операции рекомендуется использовать утилиту CPU-Z. Причем регистрацию температуры необходимо осуществлять после каждого внесенного изменения в БИОС. Также нужно выдержать интервал в 15-25 минут, в течении которого периодически проверять, как сильно нагрелся чип.

Собираем системник из говна и палок по минимальному бюджету.
Планируемая нагрузка - комфортный сёрфинг в сети, видео 720p, 2D игры (или 3D из прошлого десятилетия). Эпизод первый - центральный процессор.
Выбор сокета процессора был обусловлен наличием , которую мне удалось приобрести в офф-лайне по сходной цене. И хотя предполагаемая нагрузка на ПК по современным меркам более чем скромная, но подсознательно хотелось получить хоть какую-нибудь производительность. Тем более если учитывать мизерный . Поэтому я и остановил свой выбор на данном лоте - два ядра по 2,6 ГГц как нельзя лучше подходили для решения поставленных задач. Особенно с оглядкой на ценник.
Доставка заняла полтора месяца; по видимому сказались новогодние праздники. Но трек отслеживался и никаких беспокойств не было.
По упаковке претензий нет, всё надёжно и крепко. Содержимое посылки не пострадало.


Если откинуть всё лишнее, то непосредственно сам процессор поставляется в пластиковом блистере, что по видимому и сохраняет в целости его ноги)
Так же в комплекте присутствует пакетик смегмы каменного тролля тепмопасты. Что ж, приятный бонус. За неимением лучшего процессор хотя бы готов к работе «из коробки».


Мелко-царапки на корпусе

На первый взгляд всё ОК.


Хотя, если поиграть солнечным зайчиком, то мелко- царапинки всё-же найти можно. Ничего удивительного. Процессор-то бу-шный.


Ноги тоже в порядке, кардабалет ровный.



Протираем спиртом и устанавливаем на место


Не забываем про термоинтерфейс и запускаем систему. Материнская плата корректно распознаёт установленный процессор. Никаких обновлений BIOS не требуется. Ещё бы, ведь комплектующие родом из одной эпохи. Да они вообще как старые друзья встретились. (Полосы на мониторе - это косяк монитора. К обозреваемому процессору никакого отношения не имеют)


CPU-Z показал по этому поводу приблизительно следующее


А CPU-Z тесты:
в одно лицо - 227 попугаев
на двоих - 431


Стресс-тест разогревает процессор аж 60-65°C. Да уж, вообще не холодный. Однако здесь стоит учесть, что «сердцем» системы охлаждения является самый простой алюминиевый радиатор. Для лёгких вычислительных задач этого хватает. Но я нормально отдаю себе отчёт, что это работа на пределе возможностей СО и этот узел требует скорейшего апгрейда.


Бенчмарк PerformanceTest с точки зрения производительности центрального процессора оценил мой выбор в 941 попугай. И почему-то сравнил с производительностью шести топовых процессоров. Видимо намекая на то, что апгрейда требует не только система охлаждения).


Ну а бенчмарк встроенный в операционную систему Windows центральному процессору дал оценку в 5,9 балла из 9,9 возможных.

Если оценить общефункциональную производительность ПК, то с моими скромными задачами эта сборка справляется без тормозов и лагов. (Однако стоит упомянуть, что в качестве системного диска установлен SSD, хоть и sata 2… но на быстродействии и производительности это точно сказывается позитивно).

Сложно сделать однозначный вывод по ситуации, ведь железо морально старое, однако ещё трудоспособное. И для кого-то подобный процессор будет спасением, а для кого-то - брелоком.

Теперь прощаюсь Быть добру!

Планирую купить +29 Добавить в избранное Обзор понравился +60 +101

Несмотря на то, что 64-битные процессоры AMD анонсированы уже очень давно, они до сих пор не завоевали в России заметной доли рынка, несмотря на все свои преимущества. На мой взгляд, есть четыре основных причины этому.

Во-первых, сразу было объявлено, что Socket 754 долго не проживёт, так зачем вкладывать деньги в платформу, изначально обречённую на исчезновение? Во-вторых, AMD приучила пользователей, что её процессоры стоят дешевле, чем у конкурента, однако у А64 наблюдается примерный паритет с процессорами Intel не только по производительности, но и по цене. В-третьих, оверклокерский потенциал первых экземпляров процессоров AMD Athlon 64 оказался невелик, причём в ближайшее время нас не ждёт переход на новый степпинг с улучшенной разгоняемостью. А раз так, то почему бы не взять вместо А64 хорошо разгоняющийся Р4, тем более, что цены у них сравнимы? Ну, и, наконец, в-четвёртых, несмотря на многочисленные отсрочки анонса процессоров А64, несмотря на то, что к моменту анонса у подавляющего большинства производителей уже давно были готовы семплы материнских плат, оказалось, что чипсеты далеко не идеальны, а платы под Athlon 64 оставляют желать лучшего.

Чипсету NVIDIA nForce 3 150 не удалось повторить успех предшественника, nForce2 – лучшего из чипсетов, предназначенных для Socket A процессоров. Его возможности оказались беднее, чем у конкурирующего чипсета от VIA, шина HyperTransport работала медленнее, а возможность фиксации при разгоне частот на шинах AGP и PCI игнорировалась производителями. Первых двух недостатков чипсет VIA K8T800 был лишён, однако он изначально не умел фиксировать частоты AGP и PCI.

Хорошей иллюстрацией к сказанному может послужить написанный мной ещё в январе обзор материнской платы Gigabyte GA-K8NNXP (NVIDIA nForce3 150) . Я тогда впервые тестировал процессор Athlon 64 и материнскую плату под него, сам узнавал новое и рассказывал вам. На изучение я потратил немало времени, однако в итоге остался недоволен. Ключевая фраза звучала так "...более-менее стабильно процессор заработал только на частоте 225 МГц при напряжении 1.6 В" и вся загвоздка в словах "более-менее". Система проходила тесты на частоте 225 МГц, но легко могла выдать ошибку даже на 220 МГц. Возможно дело было в том, что частоты на AGP/PCI были завышены или версия BIOS оказалась слишком сырой, поскольку вскоре я взял на проверку материнскую плату на чипсете VIA K8T800 и она вела себя так же невразумительно. Редкий случай – я тестировал устройство, но не написал об этом отчёт.

Сейчас, к счастью, ситуация начинает меняться в лучшую сторону. Платы и процессоры под Socket 939 уже появились в продаже, стоимость 64-битных процессоров AMD снижается, а под Socket 754 нам обещают недорогие процессоры Sempron 3100+. Судя по первым отзывам, процессоры на "настоящем" ядре Newcastle, в отличие от первых "псевдо-NewCastle", которые представляли собой процессоры на ядре ClawHammer, у которых была отключена половина кэш-памяти, разгоняются немного лучше, а конкурент, наоборот, переводит свои процессоры на горячее и энергоёмкое ядро Prescott.

реклама

Помимо вышеупомянутых причин, по которым популярность 64-битных процессоров AMD в ближайшее время неизбежно должна увеличиться, добавилась ещё одна – производители чипсетов подготовили новые наборы логики для этих процессоров. Так на смену чипсету NVIDIA nForce 3 150 вышло новое семейство чипсетов NVIDIA nForce 3 250. Если вас интересуют детали относительно возможностей нового чипсета, то я рекомендую ознакомиться с обзором материнской платы Chaintech Zenith ZNF3-250 , где они рассматриваются очень подробно. Если же говорить кратко, то новый чипсет лишился всех недостатков предыдущего и выглядит очень заманчиво.

Сегодня я предлагаю изучить материнскую плату Gigabyte GA-K8NS, основанную на чипсете NVIDIA nForce 3 250 и предназначенную для Socket 754 процессоров.

Gigabyte GA-K8NS
Чипсет NVIDIA nForce3 250
Процессоры Socket 754 AMD Athlon 64
Память Тип: DDR400/ 333/ 266 -184pin
Общий объем до 3Гб DDR памяти в 3 DIMM слотах
Встроенная периферия Сетевой чип ICS 1883 LAN PHY
Звуковой кодек Realtek ALC850
Разъемы ввода/вывода 2 Serial ATA разъема
1 FDD порт
2 UDMA ATA 133/100/66 Bus Master IDE порта
2 USB 2.0/1.1 разъема (поддерживает до 4 портов)
Входной/выходной разъем S/P DIF
2 разъема для вентиляторов
CD/AUX in
1 Игровой/Миди порт
Слоты расширения 1 AGP слот (8x/4x-поддержка AGP 3.0)
5 PCI слотов (совместимы с PCI 2.3)
Задняя панель PS/2 клавиатура / мышь
1 LPT порт
1 RJ45 порт
4 USB 2.0/1.1 порта
2 COM порта
Аудио разъемы (линейный вход, линейный выход, микрофон)
Форм фактор ATX (30.5 см x 23.0 см)
BIOS 2 Mbit flash ROM, Award BIOS

Как видите, эта версия платы обходится без дополнительных контроллеров и все её способности основаны на богатых возможностях чипсета NVIDIA nForce3 250. Формально, как и предшественник, это не чипсет, поскольку функциональность северного и южного мостов объединены в одной микросхеме. Инженеры экспериментируют с разводкой и, возможно, именно поэтому материнская плата Gigabyte GA-K8NS обладает некоторыми уникальными особенностями дизайна. Я, например, ещё никогда не видел Serial-ATA разъёмов, расположенных над слотом AGP.

Введение

Начинаем знакомство с двухъядерными процессорами для настольных компьютеров. В этом обзоре вы найдёте всё о процессоре с двумя ядрами от AMD: общую информацию, тестирование производительности, разгон и сведения о энергопотреблении и тепловыделении.

Время двухъядерных процессоров пришло. В самое ближайшее время процессоры, оснащённые двумя вычислительными ядрами, начнут активное проникновение в настольные компьютеры. К концу следующего года большинство новых PC должно быть основано именно на CPU с двумя ядрами.
Столь сильное рвение производителей по внедрению двухъядерных архитектур объясняется тем, что иные методы для наращивания производительности себя уже исчерпали. Рост тактовых частот даётся очень тяжело, а увеличение скорости шины и размера кэш-памяти не приводит к ощутимому результату.
В то же время совершенствование 90 нм технологического процесса дошло да той точки, когда производство гигантских кристаллов с площадью порядка 200 кв. мм стало рентабельным. Именно этот факт дал возможность производителям CPU начать кампанию по внедрению двухъядерных архитектур.

Итак, сегодня, 9 мая 2005 года, вслед за компанией Intel, предварительно представляет свои двухъядерные процессоры для настольных систем и компания AMD. Впрочем, как и в случае с двухъядерными процессорами Smithfield (Intel Pentium D и Intel Extreme Edition), речь о начале поставок пока не идёт, они начнутся несколько позднее. В данный момент AMD даёт нам возможность лишь предварительно познакомиться со своими перспективными предложениями.
Линейка двухъядерных процессоров от AMD получила название Athlon 64 X2. Это наименование отражает как тот факт, что новые двухъядерные CPU имеют архитектуру AMD64, так и то, что в них присутствует два вычислительных ядра. Вместе с названием, процессоры с двумя ядрами для настольных систем получили и собственный логотип:


Семейство Athlon 64 X2 на момент его появления на прилавках магазинов будет включать четыре процессора с рейтингами 4200+, 4400+, 4600+ и 4800+. Эти процессоры можно будет приобрести по цене от $500 до $1000 в зависимости от их производительности. То есть, свою линейку Athlon 64 X2 AMD ставит несколько выше обычных Athlon 64.
Однако прежде чем начинать судить о потребительских качествах новых CPU, давайте подробнее познакомимся с особенностями этих процессоров.

Архитектура Athlon 64 X2

Следует отметить, что реализация двухъядерности в процессорах AMD несколько отличается от реализации Intel. Хотя, как и Pentium D и Pentium Extreme Edition, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединённых на одном кристалле, двухъядерный процессор от AMD предлагает несколько иной способ взаимодействия ядер между собой.
Дело в том, что подход Intel заключается в простом помещении на один кристалл двух ядер Prescott. При такой организации двухъядерности процессор не имеет никаких специальных механизмов для осуществления взаимодействия между ядрами. То есть, как и в обычных двухпроцессорных системах на базе Xeon, ядра в Smithfield общаются (например, для решения проблем с когерентностью кэшей) посредством системной шины. Соответственно, системная шина разделяется между ядрами процессора и при работе с памятью, что приводит к увеличению задержек при обращении к памяти обоих ядер одновременно.
Инженеры AMD предусмотрели возможность создания многоядерных процессоров ещё на этапе разработки архитектуры AMD64. Благодаря этому, в двухъядерных Athlon 64 X2 некоторые узкие места удалось обойти. Во-первых, дублированы в новых процессорах AMD далеко не все ресурсы. Хотя каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины Hyper-Transport на оба ядра общий. Взаимодействие каждого из ядер с разделяемыми ресурсами осуществляется посредством специального Crossbar-переключателя и очереди системных запросов (System Request Queue). На этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.


Таким образом, единственное узкое место, имеющееся в архитектуре Athlon 64 X2 – это пропускная способность подсистемы памяти 6.4 Гбайт в секунду, которая делится между процессорными ядрами. Впрочем, в будущем году AMD планирует перейти на использование более скоростных типов памяти, в частности двухканальной DDR2-667 SDRAM. Этот шаг должен положительно сказаться на увеличении производительности именно двухъядерных CPU.
Отсутствие поддержки современных типов памяти с высокой пропускной способностью новыми двухъядерными процессорами объясняется тем, что AMD в первую очередь стремилась сохранить совместимость Athlon 64 X2 с существующими платформами. В результате, эти процессоры могут использоваться в тех же самых материнских платах, что и обычные Athlon 64. Поэтому, Athlon 64 X2 имеют Socket 939 корпусировку, двухканальный контроллер памяти с поддержкой DDR400 SDRAM и работают с шиной HyperTransport с частотой до 1 ГГц. Благодаря этому единственное, что требуется для поддержки двухъядерных CPU от AMD современными Socket 939 материнскими платами, – это обновление BIOS. В этой связи отдельно следует отметить, что, к счастью, инженерам AMD удалось вписать в ранее установленные рамки и энергопотребление Athlon 64 X2.

Таким образом, в части совместимости с существующей инфраструктурой двухъядерные процессоры от AMD оказались лучше конкурирующих продуктов Intel. Smithfield совместим лишь с новыми чипсетами i955X и NVIDIA nFroce4 (Intel Edition), а также предъявляет повышенные требования к конвертеру питания материнской платы.
В основе процессоров Athlon 64 X2 использованы ядра с кодовыми именами Toledo и Manchester степпинга E, то есть по своему функционалу (за исключением возможности обработки двух вычислительных потоков одновременно) новые CPU подобны Athlon 64 на базе ядер San Diego и Venice. Так, Athlon 64 X2 поддерживают набор инструкций SSE3, а также имеют усовершенствованный контроллер памяти. Среди особенностей контроллера памяти Athlon 64 X2 следует упомянуть возможность использования разномастных модулей DIMM в различных каналах (вплоть до установки в оба канала памяти модулей разного объёма) и возможность работы с четырьмя двухсторонними модулями DIMM в режиме DDR400.
Процессоры Athlon 64 X2 (Toledo), содержащие два ядра с кэш-памятью второго уровня по 1 Мбайту на каждое ядро, состоят из примерно 233.2 млн. транзисторов и имеет площадь около 199 кв. мм. Таким образом, как того и следовало ожидать, кристалл и сложность двухъядерного процессора оказывается примерно вдвое больше кристалла соответствующего одноядерного CPU.

Линейка Athlon 64 X2

Линейка процессоров Athlon 64 X2 включает в себя четыре модели CPU c рейтингами 4800+, 4600+, 4400+ и 4200+. В их основе могут использоваться ядра с кодовыми именами Toledo и Manchester. Различия между ними заключаются в размере кэш-памяти второго уровня. Процессоры с кодовым именем Toledo, которые обладают рейтингами 4800+ и 4400+, имеют два L2 кэша (на каждое из ядер) объёмом 1 Мбайт. CPU же с кодовым именем Manchester располагают вдвое меньшим объёмом кэш-памяти: два раза по 512 Кбайт.
Частоты двухъядерных процессоров AMD достаточно высоки и равны 2.2 или 2.4 ГГц. То есть, тактовая частота старшей модели двухъядерного процессора AMD соответствует частоте старшего процессора в линейке Athlon 64. Это означает, что даже в приложениях, не поддерживающих многопоточность, Athlon 64 X2 сможет демонстрировать очень хороший уровень производительности.
Что же касается электрических и тепловых характеристик, то, несмотря на достаточно высокие частоты Athlon 64 X2, они мало отличаются от соответствующих характеристик одноядерных CPU. Максимальное тепловыделение новых процессоров с двумя ядрами составляет 110 Вт против 89 Вт у обычных Athlon 64, а ток питания возрос до 80А против 57.4А. Впрочем, если сравнивать электрические характеристики Athlon 64 X2 с спецификациями Athlon 64 FX-55, то рост максимального тепловыделения составит всего лишь 6Вт, а предельный ток и вовсе не изменится. Таким образом, можно говорить о том, что процессоры Athlon 64 X2 предъявляют к конвертеру питания материнских плат примерно такие же требования, как и Athlon 64 FX-55.

Целиком характеристики линейки процессоров Athlon 64 X2 выглядят следующим образом:


Следует отметить, что AMD позиционирует Athlon 64 X2 как совершенно независимую линейку, отвечающую своим целям. Процессоры этого семейства предназначаются той группе продвинутых пользователей, для которой важна возможность использования нескольких ресурсоёмких приложений одновременно, либо применяющих в повседневной работе приложения для создания цифрового контента, большинство из которых эффективно поддерживает многопоточность. То есть, Athlon 64 X2 представляется неким аналогом Athlon 64 FX, но не для игроков, а для энтузиастов, использующих PC для работы.


При этом выпуск Athlon 64 X2 не отменяет существование остальных линеек: Athlon 64 FX, Athlon 64 и Sempron. Все они продолжат мирно сосуществовать на рынке.
Но, отдельно следует отметить тот факт, что линейки Athlon 64 X2 и Athlon 64 имеют унифицированную систему рейтингов. Это значит, что процессоры Athlon 64 с рейтингами выше 4000+ на рынке не появятся. В то же время семейство одноядерных процессоров Athlon 64 FX будет продолжать развиваться, поскольку данные CPU востребованы геймерами.
Цены Athlon 64 X2 таковы, что, судя по ним, эту линейку можно считать дальнейшим развитием обычных Athlon 64. Фактически, так оно и есть. По мере того, как старшие модели Athlon 64 будут переходить в среднюю ценовую категорию, верхние модели в этой линейке будут заменяться на Athlon 64 X2.
Появление процессоров Athlon 64 X2 в продаже ожидается в июне. Рекомендованные AMD розничные цены выглядят следующим образом:

AMD Athlon 64 X2 4800+ - $1001;
AMD Athlon 64 X2 4600+ - $803;
AMD Athlon 64 X2 4400+ - $581;
AMD Athlon 64 X2 4200+ - $537.

Athlon 64 X2 4800+: первое знакомство

Нам удалось получить на тестирование образец процессора AMD Athlon 64 X2 4800+, являющегося старшей моделью в линейке двухъядерных CPU от AMD. Данный процессор по своему внешнему виду оказался очень похож на своих прародителей. Фактически, отличается он от обычных Athlon 64 FX и Athlon 64 для Socket 939 только лишь маркировкой.


Несмотря на то, что Athlon 64 X2 – это типичный Socket 939 процессор, который должен быть совместим с большинством материнских плат с 939-контактным процессорным гнездом, на данный момент его функционирование с многими платами затруднено в виду отсутствия необходимой поддержки со стороны BIOS. Единственной материнской платой, на которой данный CPU смог заработать в двухъядерном режиме в нашей лаборатории, оказалась ASUS A8N SLI Deluxe, для которой существует специальный технологический BIOS с поддержкой Athlon 64 X2. Впрочем, очевидно, что с появлением двухъядерных процессоров AMD в широкой продаже данный недостаток будет ликвидирован.
Следует отметить, что без необходимой поддержки со стороны BIOS, Athlon 64 X2 в любой материнской плате превосходно работает в одноядерном режиме. То есть, без обновлённой прошивки наш Athlon 64 X2 4800+ работал как Athlon 64 4000+.
Популярная утилита CPU-Z пока выдаёт о Athlon 64 X2 неполную информацию, хотя и распознаёт его:


Несмотря на то, что CPU-Z детектирует два ядра, вся отображаемая информация о кеш-памяти относится лишь к одному из ядер CPU.
Предваряя тесты производительности полученного процессора, в первую очередь мы решили исследовать его тепловые и электрические характеристики. Для начала мы сравнили температуру Athlon 64 X2 4800+ с температурой других Socket 939 процессоров. Для этих опытов мы применяли единый воздушный кулер AVC Z7U7414001; прогрев процессоров осуществлялся утилитой S&M 1.6.0, которая оказалась совместима с двухъядерным Athlon 64 X2.


В состоянии покоя температура Athlon 64 X2 оказывается несколько выше температуры процессоров Athlon 64 на ядре Venice. Однако, несмотря на наличие в нём двух ядер, этот CPU не горячее чем одноядерные процессоры, производимые по 130 нм технологическому процессу. Причём, такая же картина наблюдается и при максимальной нагрузке CPU работой. Температура Athlon 64 X2 при 100-процентной загрузке оказывается меньше температуры Athlon 64 и Athlon 64 FX, в которых используются 130 нм ядра. Таким образом, благодаря пониженному напряжению питания и использованию ядра ревизии E инженерам AMD действительно удалось добиться приемлемого тепловыделения своих двухъядерных процессоров.
Исследуя энергопотребление Athlon 64 X2, мы решили сравнить его не только с соответствующей характеристикой одноядерных Socket 939 CPU, но и с энергопотреблением старших процессоров Intel.


Как это ни покажется удивительным, но энергопотребление Athlon 64 X2 4800+ оказывается ниже энергопотребления Athlon 64 FX-55. Объясняется это тем, что в основе Athlon 64 FX-55 лежит старое 130 нм ядро, так что в этом нет ничего странного. Основной же вывод заключается в другом: те материнские платы, которые были совместимы с Athlon 64 FX-55, способны (с точки зрения мощности конвертера питания) поддерживать и новые двухъядерные процессоры AMD. То есть, AMD совершенно права, говоря о том, что вся необходимая для внедрения Athlon 64 X2 инфраструктура уже практически готова.

Естественно, мы не упустили и возможность проверки разгонного потенциала Athlon 64 X2 4800+. К сожалению, технологический BIOS для ASUS A8N-SLI Deluxe, поддерживающий Athlon 64 X2, не позволяет изменять ни напряжение на CPU, ни его множитель. Поэтому, эксперименты по оверклокингу выполнялись на штатном для процессора напряжении путём увеличения частоты тактового генератора.
В процессе экспериментов нам удалось увеличить частоту тактового генератора до 225 МГц, при этом процессор продолжал сохранять способность к стабильному функционированию. То есть, в результате разгона у нас получилось поднять частоту нового двухъядерного CPU от AMD до 2.7 ГГц.


Итак, при оверклокинге Athlon 64 X2 4800+ позволил увеличить свою частоту на 12.5%, что, как нам кажется, для двухъядерного CPU не так уж и плохо. По крайней мере, можно говорить о том, что частотный потенциал ядра Toledo близок к потенциалу других ядер ревизии E: San Diego, Venice и Palermo. Так что достигнутый при разгоне результат даёт нам надежду на появление ещё более скоростных процессоров в семействе Athlon 64 X2 до внедрения следующего технологического процесса.

Как мы тестировали

В рамках этого тестирования мы сравнили производительность двухъядерного процессора Athlon 64 X2 4800+ с быстродействием старших процессоров с одноядерной архитектурой. То есть, в соперниках у Athlon 64 X2 выступили Athlon 64, Athlon 64 FX, Pentium 4 и Pentium 4 Extreme Edition.
К сожалению, сегодня мы не можем представить сравнение нового двухъядерного процессора от AMD с конкурирующим решением от Intel, CPU с кодовым именем Smithfield. Однако в самое ближайшее время наши результаты тестов будут дополнены результатами Pentium D и Pentium Extreme Edition, так что следите за обновлениями.
Пока же в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

Процессоры:

AMD Athlon 64 X2 4800+ (Socket 939, 2.4 ГГц, 2 x 1024KB L2, ревизия ядра E6 - Toledo);
AMD Athlon 64 FX-55 (Socket 939, 2.6 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 4000+ (Socket 939, 2.4 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
Intel Pentium 4 Extreme Edition 3.73 ГГц (LGA775, 3.73 ГГц, 2MB L2);
Intel Pentium 4 660 (LGA775, 3.6 ГГц, 2MB L2);
Intel Pentium 4 570 (LGA775, 3.8 ГГц, 1MB L2);

Материнские платы:

ASUS A8N SLI Deluxe (Socket 939, NVIDIA nForce4 SLI);
NVIDIA C19 CRB Demo Board (LGA775, nForce4 SLI (Intel Edition)).

Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-12).

Графическая карта: - PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: - Maxtor MaXLine III 250GB (SATA150).
Операционная система: - Microsoft Windows XP SP2.

Производительность

Офисная работа

Для исследования производительности в офисных приложениях мы воспользовались тестами SYSmark 2004 и Business Winstone 2004.


Тест Business Winstone 2004 моделирует работу пользователя в распространённых приложениях: Microsoft Access 2002, Microsoft Excel 2002, Microsoft FrontPage 2002, Microsoft Outlook 2002, Microsoft PowerPoint 2002, Microsoft Project 2002, Microsoft Word 2002, Norton AntiVirus Professional Edition 2003 и WinZip 8.1. Полученный же результат достаточно закономерен: все эти приложения многопоточность не используют, а потому Athlon 64 X2 оказывается лишь чуть-чуть быстрее своего одноядерного аналога Athlon 64 4000+. Небольшое преимущество же объясняется скорее усовершенствованным контроллером памяти ядра Toledo, нежели наличием второго ядра.
Впрочем, в повседневной офисной работе частенько несколько приложений работает одновременно. Насколько эффективными в этом случае оказываются двухъядерные процессоры AMD, показано ниже.


В данном случае измеряется скорость работы в Microsoft Outlook и Internet Explorer, в то время как в фоновом режиме выполняется копирование файлов. Однако, как показывает приведённая диаграмма, копирование файлов – это не столь сложная задача и выигрыша двухъядерная архитектура тут не даёт.


Этот тест несколько сложнее. Здесь в фоновом режиме выполняется архивация файлов посредством Winzip, в то время как на переднем плане пользователь работает в Excel и Word. И в данном случае мы получаем вполне осязаемый дивиденд от двухъядерности. Athlon 64 X2 4800+, работающий на частоте 2.4 ГГц, обгоняет не только Athlon 64 4000+, но и одноядерный Athlon 64 FX-55 с частотой 2.6 ГГц.


По мере усложнения задач, работающих в фоновом режиме, прелести двухъядерной архитектуры начинают проявляться всё сильнее. В данном случае моделируется работа пользователя в приложениях Microsoft Excel, Microsoft Project, Microsoft Access, Microsoft PowerPoint, Microsoft FrontPage и WinZip, в то время как в фоновом режиме происходит антивирусная проверка. В данном тесте работающие приложения оказываются способными как следует загрузить оба ядра Athlon 64 X2, результат чего не заставляет себя ждать. Двухъядерный процессор поставленные задачи решает в полтора раза быстрее аналогичного одноядерного.


Здесь моделируется работа пользователя, получающего письмо в Outlook 2002, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Данная модель работы пользователя предусматривает использование многопоточности, поэтому Athlon 64 X2 4800+ демонстрирует более высокое быстродействие, нежели одноядерные процессоры от AMD и Intel. Заметим, что процессоры Pentium 4 с технологией «виртуальной» многопоточности Hyper-Threading не могут похвастать столь же высокой производительностью, как Athlon 64 X2, в котором находится два настоящих независимых процессорных ядра.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf-формат с использованием Acrobat 5.0.5. Затем, пользуясь сформированным документом, создается презентация в PowerPoint 2002. И в данном случае Athlon 64 X2 вновь оказывается на высоте.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма. Хотя в этом случае положительный эффект от двухъядерности также присутствует, процессоры семейства Pentium 4 справляются с такой работой несколько быстрее.
В целом, относительно оправданности использования двухъядерных процессоров в офисных приложениях можно сказать следующее. Сами по себе приложения такого типа редко оптимизированы для создания многопоточной нагрузки. Поэтому, получить выигрыш при работе в одном конкретном приложении на двухъядерном процессоре тяжело. Однако, если модель работы такова, что какие-то из ресурсоёмких задач выполняются в фоне, то процессоры с двумя ядрами могут дать весьма ощутимый прирост в быстродействии.

Создание цифрового контента

В этом разделе мы вновь воспользуемся комплексными тестами SYSmark 2004 и Multimedia Content Creation Winstone 2004.


Бенчмарк моделирует работу в следующих приложениях: Adobe Photoshop 7.0.1, Adobe Premiere 6.50, Macromedia Director MX 9.0, Macromedia Dreamweaver MX 6.1, Microsoft Windows Media Encoder 9 Version 9.00.00.2980, NewTek LightWave 3D 7.5b, Steinberg WaveLab 4.0f. Поскольку большинство приложений, предназначенных для создания и обработки цифрового контента, поддерживают многопоточность, совершенно неудивителен успех Athlon 64 X2 4800+ в данном тесте. Причём, заметим, что преимущество этого двухъядерного CPU проявляется даже тогда, когда параллельная работа в нескольких приложениях не используется.


Когда же несколько приложений работает одновременно, двухъядерные процессоры способны показать ещё более впечатляющие результаты. Например, в этом тесте в пакете 3ds max 5.1 рендерится в bmp файл изображение, и, в это же время, пользователь готовит web-страницы в Dreamweaver MX. Затем пользователь рендерит в векторном графическом формате 3D анимацию.


В этом случае моделируется работа в Premiere 6.5 пользователя, который создает видео-ролик из нескольких других роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
И снова мы видим гигантское преимущество двухъядерной архитектуры от AMD как над обычными Athlon 64 и Athlon 64 FX, так и над Pentium 4 с технологией «виртуальной» многоядерности Hyper-Threading.


А вот и ещё одно проявление триумфа двухъядерной архитектуры AMD. Его причины такие же, как и в предыдущем случае. Они кроются в использованной модели работы. Здесь гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
Таким образом, необходимо признать, что для приложений, работающих с цифровым контентом, двухъядерная архитектура очень выгодна. Практически любые задачи такого типа умеют эффективно загружать оба ядра CPU одновременно, что приводит к сильному увеличению скорости работы системы.

PCMark04, 3DMark 2001 SE, 3DMark05

Отдельно мы решили посмотреть на скорость Athlon 64 X2 в популярных синтетических бенчмарках от FutureMark.






Как мы уже неоднократно отмечали ранее, тест PCMark04 оптимизирован для многопоточных систем. Именно поэтому процессоры Pentium 4 с технологией Hyper-Threading показывали в нём лучшие результаты, нежели CPU семейства Athlon 64. Однако, теперь ситуация сменилась. Два настоящих ядра в Athlon 64 X2 4800+ позволили этому процессору оказаться наверху диаграммы.






Графические тесты семейства 3DMark многопоточность не поддерживают ни в каком виде. Поэтому, результаты Athlon 64 X2 здесь мало отличаются от показателей обычных Athlon 64 с частотой 2.4 ГГц. Небольшое преимущество же над Athlon 64 4000+ объясняется наличием в ядре Toledo усовершенствованного контроллера памяти, а над Athlon 64 3800+ - большим объёмом кеш-памяти.
Впрочем, в составе 3DMark05 есть пара тестов, которые могут задействовать многопоточность. Это – тесты CPU. В этих бенчмарках на центральный процессор возлагается нагрузка по программной эмуляции вершинных шейдеров, а, кроме того, вторым потоком, выполняется обсчёт физики игровой среды.






Результаты вполне закономерны. Если приложение в состоянии задействовать два ядра, то двухъядерные процессоры работают намного быстрее одноядерных.

Игровые приложения















К сожалению, современные игровые приложения многопоточность не поддерживают. Несмотря на то, что технология «виртуальной» многоядерности Hyper-Threading появилась очень давно, разработчики игр не спешат делить вычисления, производимые игровым движком, на несколько потоков. И дело, скорее всего, не в том, что для игр это сделать тяжело. По всей видимости, рост вычислительных возможностей процессора для игр не так уж и важен, поскольку основная нагрузка в задачах этого типа ложится на видеокарту.
Впрочем, появление на рынке двухъядерных CPU даёт некоторую надежду на то, что производители игр станут сильнее нагружать центральный процессор расчётами. Результатом этого может явиться появление нового поколения игр с продвинутым искусственным интеллектом и реалистичной физикой.

Пока же в применении двухъядерных CPU в игровых системах никакого смысла нет. Поэтому, кстати, AMD не собирается прекращать развитие своей линейки процессоров ориентированной специально на геймеров, Athlon 64 FX. Эти процессоры характеризуются более высокими таковыми частотами и наличием единственного вычислительного ядра.

Сжатие информации


К сожалению, WinRAR не поддерживает многопоточность, поэтому результат Athlon 64 X2 4800+ практически не отличается от результата обычного Athlon 64 4000+.


Однако существуют архиваторы, которые могут эффективно задействовать двухъядерность. Например, 7zip. При тестировании в нём результаты Athlon 64 X2 4800+ вполне оправдывают стоимость этого процессора.

Кодирование аудио и видео


Популярный mp3 кодек Lame до недавнего времени многопоточность не поддерживал. Однако вновь появившаяся версия 3.97 alpha 2 этот недостаток исправила. В результате, процессоры Pentium 4 стали кодировать аудио быстрее, чем Athlon 64, а Athlon 64 X2 4800+, хотя и обгоняет своих одноядерных собратьев, всё же несколько отстаёт от старших моделей семейства Pentium 4 и Pentium 4 Extreme Edition.


Хотя кодек Mainconcept может задействовать два вычислительных ядра, скорость Athlon 64 X2 оказывается не на много выше быстродействия, демонстрируемого одноядерными собратьями. Причём, отчасти это преимущество объясняется не только двухъядерной архитектурой, но и поддержкой команд SSE3, а также усовершенствованным контроллером памяти. В результате, Pentium 4 с одним ядром в Mainconcept работают заметно быстрее, чем Athlon 64 X2 4800+.


При кодировании MPEG-4 популярным кодеком DiVX, картина складывается совершенно иная. Athlon 64 X2, благодаря наличию второго ядра, получает хорошую прибавку к скорости, которая позволяет ему обойти даже старшие модели Pentium 4.


Кодек XviD также поддерживает многопоточность, однако добавление второго ядра в этом случае даёт гораздо меньший прирост в скорости, чем в эпизоде с DiVX.


Очевидно, что из кодеков Windows Media Encoder оптимизирован для многоядерных архитектур лучше всего. Например, Athlon 64 X2 4800+ справляется с кодированием с использованием этого кодека в 1.7 раз быстрее, чем одноядерный Athlon 64 4000+, работающий на аналогичной тактовой частоте. В результате, говорить о каком бы то ни было соперничестве одноядерных и двухъядерных процессоров в WME просто бессмысленно.
Как и приложения для обработки цифрового контента, подавляющее большинство кодеков уже давно оптимизировано для Hyper-Threading. В результате, и двухъядерные процессоры, позволяющие выполнять два вычислительных потока одновременно, выполняют кодирование быстрее, чем одноядерные. То есть, использование систем с CPU с двумя ядрами для кодирования аудио и видео контента вполне оправдано.

Редактирование изображений и видео









Популярные продукты Adobe для обработки видео и редактирования изображений хорошо оптимизированы под многопроцессорные системы и Hyper-Threading. Поэтому, в Photoshop, After Effects и Premiere двухъядерный процессор от AMD демонстрирует чрезвычайно высокую производительность, значительно превышающую быстродействие не только Athlon 64 FX-55, но и более быстрых в задачах этого класса процессоров Pentium 4.

Распознавание текста


Достаточно популярная программа для оптического распознавания текстов ABBYY Finereader, хотя и имеет оптимизацию для процессоров с технологией Hyper-Threading, на Athlon 64 X2 работает только лишь одним потоком. Налицо ошибка программистов, которые детектируют возможность распараллеливания вычислений по наименованию процессора.
К сожалению, подобные примеры неправильного программирования встречаются и в наши дни. Будем надеяться, что на сегодня число приложений, подобных ABBYY Finereader, минимально, а в ближайшем будущем их количество сократится до нуля.

Математические вычисления






Как это не покажется странным, но популярные математические пакеты MATLAB и Mathematica в варианте для операционной системы Windows XP многопоточность не поддерживают. Поэтому, в этих задачах Athlon 64 X2 4800+ выступает примерно на одном уровне с Athlon 64 4000+, опережая его лишь за счёт лучше оптимизированного контроллера памяти.


Зато многие задачи математического моделирования позволяют организовать распараллеливание вычислений, которое даёт неплохой прирост производительности в случае использования двухъядерных CPU. Это и подтверждается тестом ScienceMark.

3D-рендеринг






Финальный рендеринг относится к задачам, которые могут легко и эффективно быть распараллелены. Поэтому, совершенно неудивительно, что применение при работе в 3ds max процессора Athlon 64 X2, оснащённого двумя вычислительными ядрами, позволяет получить очень неплохой прирост в быстродействии.






Аналогичная картина наблюдается и в Lightwave. Таким образом, использование двухъядерных процессоров при финальном рендеринге не менее выгодно, чем и в приложениях для обработки изображений и видео.

Общие впечатления

Перед тем, как сформулировать общие выводы по итогам нашего тестирования, пару слов следует сказать и о том, что осталось за кадром. А именно о комфорте использования систем, оснащённых двухъядерными процессорами. Дело в том, что в системе с одним одноядерным процессором, например, Athlon 64, в каждый момент времени может исполняться лишь один вычислительный поток. Это значит, что если в системе работает несколько приложений одновременно, то планировщик OC вынужден с большой частотой переключать процессорные ресурсы между задачами.

За счёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, «зависает», и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых двухъядерными процессорами, на порядок реже. Дело в том, процессоры с двумя ядрами способны выполнять одновременно два вычислительных потока, соответственно, для функционирования планировщика появляется в два раза больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с двухъядерным процессором стала некомфортной, необходимо одновременное пересечение двух процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

В заключение мы решили провести небольшой эксперимент, показывающий, как влияет на производительность системы с одноядерным и двухъядерным процессором параллельное исполнение большого количества ресурсоёмких приложений. Для этого мы измеряли число fps в Half-Life 2, запуская в фоне несколько копий архиватора WinRAR.


Как видим, при использовании в системе процессора Athlon 64 X2 4800+, производительность в Half-Life 2 остаётся на приемлемом уровне гораздо дольше, нежели в системе с одноядерным, но более высокочастотным процессором Athlon 64 FX-55. Фактически, в системе с одноядерным процессором запуск одного фонового приложения уже приводит к двукратному падению скорости. При дальнейшем увеличении числа задач, работающих в фоне, производительность падает до неприличного уровня.
В системе же с двухъядерным процессором сохранять высокую производительность приложения, работающего на переднем плане, удаётся гораздо дольше. Запуск одной копии WinRAR проходит практически незамеченным, добавление большего числа фоновых приложений, хотя и оказывает влияние на задачу переднего плана, приводит к гораздо меньшему снижению производительности. Следует заметить, что падение скорости в данном случае вызвано не столько нехваткой процессорных ресурсов, сколько разделением ограниченной по пропускной способности шины памяти между работающими приложениями. То есть, если фоновые задачи не будут активно работать с памятью, приложение переднего плана вряд ли сильно будет реагировать на увеличение фоновой нагрузки.

Выводы

Сегодня состоялось наше первое знакомство с двухъядерными процессорами от AMD. Как показали проведённые испытания, идея объединения двух ядер в одном процессоре продемонстрировала свою состоятельность на практике.
Использование двухъядерных процессоров в настольных системах, способно значительно увеличить скорость работы целого ряда приложений, эффективно использующих многопоточность. Ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах семейства Pentium 4 уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от двухъядерной архитектуры CPU. Так, среди приложений, скорость работы которых на двухъядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР.
При этом существует и большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ – офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях двухъядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняется одновременно.
Резюмируя вышесказанное, на графике ниже мы просто приводим численное выражение преимущества двухъядерного процессора Athlon 64 X2 4800+ над одноядерным Athlon 64 4000+, работающим на той же частоте 2.4 ГГц.


Как видно по графику, Athlon 64 X2 4800+ оказывается во многих приложениях значительно быстрее старшего CPU в семействе Athlon 64. И, если бы не баснословно высокая стоимость Athlon 64 X2 4800+, превышающая $1000, то этот CPU смело можно было бы назвать весьма выгодным приобретением. Тем более что ни в одном приложении он не отстаёт от своих одноядерных собратьев.
Учитывая же цену Athlon 64 X2, следует признать, что на сегодня эти процессоры наравне с Athlon 64 FX могут являться разве только ещё одним предложением для обеспеченных энтузиастов. Те из них, для кого в первую очередь важна не игровая производительность, а скорость работы в других приложениях, обратят внимание на линейку Athlon 64 X2. Экстремальные же геймеры, очевидно, останутся приверженцами Athlon 64 FX.

Рассмотрение двухъядерных процессоров на нашем сайте на этом не заканчивается. В ближайшие дни ждите второй части эпопеи, в которой речь пойдёт о двухъядерных CPU от Intel.

Сейчас разработки AMD оценены по заслугам, в результате все больше потребителей, в том числе и корпоративных, обращают внимание на продукцию этой фирмы.

64-разрядные процессоры Athlon 64, появившиеся в 2003 году, пользуются заслуженным успехом и именно они позволили компании AMD избавиться от имиджа производителя дешевых клонов процессоров с архитектурой x86. Сейчас разработки инженеров AMD оценены по заслугам, в результате все больше потребителей, в том числе и корпоративных, обращают внимание на продукцию этой фирмы.

"Золотой" порой семейства Athlon 64 можно назвать конец 2003 - начало 2005 годов: тогда главный соперник AMD, корпорация Intel, не располагала аналогами этих процессоров. С появлением в Pentium 4 последнего поколения поддержки 64-разрядных расширений лояльные Intel потребители, рассматривавшие теоретическую возможность приобретения процессора Athlon 64, выберут, разумеется, чип от Intel. Основное соперничество теперь разгорается между двуядерными процессорами Intel Pentium D и AMD Athlon 64 X2, а, как полагают многие специалисты, чип AMD имеет более выигрышную конструкцию, чем кристалл Intel.

Процессоры

Именно процессоры Athlon 64 были первыми в мире чипами, способными без ущерба для производительности работать как с 64-разрядными, так и с широко распространенными сегодня 32-битными приложениями. Кроме того, в Athlon 64 реализована фирменная технология Cool"n"Quiet, динамически снижающая тактовую частоту процессора в зависимости от реальной нагрузки, а также антивирусная технология Enhanced Virus Protection.

Процессоры Athlon 64 в настоящее время выпускаются на основе пяти разных ядер: SledgeHammer , NewCastle , Winchester , Venice и San Diego . Еще встречаются в продаже модели на базе ядра ClawHammer, однако они считаются морально устаревшими. Модели на ядре NewCastle выпускаются в двух разновидностях: для старого разъема Socket 754 и для современного Socket 939. Главное отличие - во встроенном в чип контроллере памяти: модификации для Socket 754 снабжены одноканальным контроллером памяти DDR, а модификации для Socket 939 - двухканальным контроллером. Прочие модели, за исключением SledgeHammer, производятся только для Socket 939.

В чипах серии FX и в Athlon 64 4000+ (модель ADA4000DEP5AS) используется ядро SledgeHammer, близкое по архитектуре к устаревшему ClawHammer. Эти процессоры, состоящие из 105,9 миллиона транзисторов, снабжены двухканальным контроллером памяти, поддерживают шину Hyper-Transport 1 ГГц и работают на тактовых частотах от 2,2 до 2,6 ГГц. Объем кэш-памяти второго уровня - 1 Мбайт. Производятся процессоры по 0,13-микронной технологии. Модель FX-51 и одна из модификаций FX-53 (ADAFX53CEP5AT) рассчитаны на разъем Socket 940, а остальные чипы - на разъем Socket 939.

Процессоры Athlon 64 на базе ядра NewCastle состоят из 68,5 миллиона транзисторов и также производятся по 0,13-микронной технологии. Чипы работают на тактовых частотах от 2,2 до 2,4 ГГц (модели 3500+ и 3800+) и снабжены кэш-памятью второго уровня объемом 512 Кбайт и двухканальным контроллером оперативной памяти. Частота работы шины Hyper-Transport составляет 1 ГГц. Модификации NewCastle для разъема с одноканальным контроллером памяти поддерживают системную шину 800 МГц.

Модели на ядре Winchester , как и чипы NewCastle, состоят из 68,5 миллиона транзисторов, но выпускаются уже по 0,09-микронной технологии. Эти процессоры имеют кэш второго уровня объемом 512 Кбайт, двухканальный контроллер памяти DDR и поддерживают шину Hyper-Transport, работающую на частоте 1 ГГц. Модели Athlon 64 3000+, 3200+ и 3000+ на ядре Winchester работают на тактовых частотах от 1,8 до 2,2 ГГц.

Чипы Athlon 64 на ядре Venice тоже состоят из 68,5 миллиона, однако в их производстве используется новый технологический процесс Dual Stress Liner (DSL), разработанный в сотрудничестве с IBM. Основной смысл этой технологии "растянутого" кремния заключается в повышении скорости срабатывания транзисторов почти на четверть, при этом, в отличие от интеловской технологии "растянутого" кремния, в производстве можно использовать привычный и недорогой нитрид кремния.

Модели на ядре Venice снабжены 512 Кбайтами кэш-памяти второго уровня, двухканальным контроллером памяти и работают с системной шиной 1 ГГц. Тактовые частоты процессоров 3000+, 3200+, 3500+ и 3800+ с этим ядром составляют от 1,8 до 2,4 ГГц. Venice стали первыми моделями Athlon 64 с поддержкой набора инструкций SSE3. Кроме того, ликвидированы проблемы с совместимостью встроенного контроллера с различными модулями оперативной памяти.

Наконец, самым современным ядром для одноядерных Athlon 64 на сегодняшний день является San Diego . Официально в продажу пока выпущены только процессоры 4000+ с тактовой частотой 2,4 ГГц и кэшем второго уровня объемом 1 Мбайт. Однако, по некоторым данным, в японских магазинах встречаются и модели 3500+ c урезанным вдвое кэшем L2. Процессоры поддерживают шину Hyper-Transport 1 ГГц и набор инструкций SSE3.

Наборы системной логики

Платы для процессоров Athlon 64 выпускаются на основе нескольких наборов системной логики. Прежде всего, это одночиповые наборы микросхем nVidia семейств nForce 3 и nForce 4, считающиеся чуть ли не стандартом де-факто для этих процессоров. О серии nForce 3 мы говорить не будем, поскольку эти морально устаревшие чипсеты используются сегодня только в недорогих материнских платах и не поддерживают интерфейс PCI Express x16 для установки видеокарт последнего поколения.

Семейство nForce 4 состоит из трех модификаций, которые объединяет поддержка перспективного интерфейса PCI Express - до трех устройств PCI Express x1 и одну видеокарту с интерфейсом PCI Express x16 или две - с интерфейсом PCI Express x8.

Базовая модификация рассчитана на системную шину Hyper-Transport 800 МГц и снабжена контроллером Serial ATA (150) с поддержкой RAID, 10 портами USB 2.0, гигабитным сетевым адаптером и 8.1-канальным звуковым контроллером. Модификация с индексом Ultra отличается контроллером Serial ATA II (300) и поддержкой системной шины 1 ГГц, а модификация с индексом SLI дополнительно способна работать с одной видеокартой PCI Express x16 или с двумя картами PCI Express x8, объединенных фирменным "мостом" SLi. В режиме SLI способны работать только карты на основе графических ускорителей nVidia серий GeForce 6600 и 6800. К сожалению, чипсеты серии nForce 4 не оснащаются контроллером IEEE 1394 (FireWire), который уже стал привычным в современных компьютерах, однако большинство производителей материнских плат самостоятельно решают эту проблему, устанавливая микросхемы сторонних производителей. Младшая модификация nForce 4 рассчитана только на процессоры Athlon 64, а две старшие - как на чипы Athlon 64, так и на Athlon 64 FX.

Вторую ступень по популярности занимают наборы микросхем тайваньской фирмы VIA Technologies. Все еще пользуется спросом заслуженный чипсет K8T800, рассчитанный на шину 800 МГц и поддерживающий видеокарты AGP 8x. В комплект входит южный мост VT8237, снабженный контроллерами ATA133 и Serial ATA, 100-мегабитным сетевым адаптером и 5.1-канальным звуковым контроллером. Поддерживаются до шести слотов PCI и до восьми портов USB 2.0. Модификация K8М800 отличается лишь встроенным графическим контроллером, а модель K8T800 Pro - поддержкой Hyper-Transport 1 ГГц. Чуть более современный набор K8T890 отличается от K8T800 Proлишь встроенным контроллером PCI Express x16 вместо AGP 8x.

Наборы логики VIA традиционно несколько дешевле решений nVidia, при этом по они не слишком сильно уступают им по производительности. Как правило, на K8T800 собирают недорогие игровые компьютеры для дома, в то время как на чипсетах nForce 4 - мощные игровые ПК и даже рабочие станции.

Системную логику для процессоров Athlon 64 выпускают еще три фирмы - ATI Technologies, SiS и ULi, однако эти чипсеты гораздо менее популярны и, за исключением решений ATI, серьезно отстают по производительности от лидеров.

Канадская фирма ATI выпускает две модели наборов микросхем для Athlon 64 - Xpress 200 и 200P . Оба чипсета поддерживают как процессоры Athlon 64, так и чипы Athlon 64 FX. Модификация 200 отличается встроенным графическим контроллером начального уровня Radeon X300, который, однако, работает на несколько более низкой частоте, чем его дискретный ("карточный") вариант. Остальные характеристики чипсетов одинаковы: поддержка системной шины Hyper-Transport 1 ГГц, интерфейс PCI Express x16 для установки видеокарты, поддержка четырех слотов PCI Express x1. В качестве южного моста применяется микросхема ULi M1573 со встроенными контроллерами ATA133 и Serial ATA (150), поддержкой до 8 портов USB 2.0, до 7 слотов PCI, 5.1-канальным звуковым контроллером и 100-мегабитным сетевым контроллером.

Тайваньская фирма выпускает чипсеты 755 и 760GX , рассчитанные на процессоры Athlon 64, а модели 755FX и 756 - на чипы Athlon 64 FX. Модели для "обычных" Athlon 64 поддерживают шину 800 МГц, а для FX - шину 1 ГГц. Связь с южным мостом осуществляется через фирменную шину MuTIOL c пропускной способностью 1066 Мбайт/с. Все чипсеты, за исключением 756-го, снабжены видеоинтерфейсом AGP 8x, а 756-й - новейшим PCI Express x16. Модель 760GX имеет встроенный графический ускоритель Mirage 2. В комплекте с 756-м поставляется южный мост SiS 965 с гигабитным сетевым контроллером, контроллером PCI Express x1 на два слота, 7.1-канальным звуковым контроллером и адаптером USB 2.0 c поддержкой 8 портов. Остальные модификации комплектуются южным мостом SiS 964 cо 100-мегабитным сетевым контроллером, 5.1-канальным звуковым процессором, а также контроллером USB 2.0 с поддержкой 6 портов и контроллером IEEE 1394 (FireWire). В оба южных моста встроены контроллера Serial ATA (150) и ATA133.

Компания ULi также выпускает чипсеты M 1687/1689 + M 1563, относящиеся к нижней ценовой категории и рассчитанные на процессоры Athlon 64 с шиной 800 МГц и видеокарты с интерфейсом AGP 8x. Материнские платы на базе чипсетов ULi встречаются в продаже редко, поскольку практически не пользуются спросом.

При выборе системной платы стоит обращать внимание, помимо конструкции, оснащенности платы и ее комплектации, на фирму-производителя. Приобретая продукцию компаний первого эшелона, к которым в настоящее время относятся Asus, Elitegroup Computer Systems (ECS), Gigabyte и MSI, вы получаете практически стопроцентную гарантию работоспособности платы и отсутствия досадных недоработок. Хорошо себя зарекомендовали также изделия таких фирм, как ABIT, Albatron, AOpen, EPoX и Soltek. К сожалению, никто не застрахован от производственного брака, поэтому лучше всего приобретать системную плату в надежной компании, гарантирующий обмен недоброкачественных изделий.

На следующей странице можно ознакомиться с некоторыми материнскими платами для процессоров Athlon 64.