Логическая функция по таблице истинности онлайн. В каком порядке выполнять логические операции

Построение таблиц истинности сложных высказываний.

Приоритет логических операций

1) инверсия 2) конъюнкция 3) дизъюнкция 4) импликация и эквивалентность

Как составить таблицу истинности?

Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.

Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре:

(0, 0), (0, 1), (1, 0), (1, 1).

Если формула содержит три переменные, то возможных наборов значений переменных восемь (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Количество наборов для формулы с четырьмя переменными равно шестнадцати и т. д.

Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.

Примеры.

1. Составим таблицу истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 1 , то есть является тождественно истинной .

2. Таблица истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0 , то есть является тождественно ложной .

3. Таблица истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что формула 0 " style="border-collapse:collapse;border:none">

Вывод: получили в последнем столбце все единицы. Значит, значение сложного высказывания истинно при любых значениях простых высказываний К и С. Следовательно, учитель рассуждал логически правильно.

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Определение 1

Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

Определение 2

Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

Определение 3

Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

Рисунок 1.

Приоритетом в выполнении порядка выполнения операций пользуются скобки.

Алгоритм построения таблицы истинности логической функции

    Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка) , $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

    Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

    Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

Рисунок 2.

Пример 1

Составить таблицу истинности логического выражения $D=\bar{A} \vee (B \vee C)$.

Решение:

    Определим количество строк:

    кол-во строк = $2^3 + 1=9$.

    Количество переменных – $3$.

    1. инверсия ($\bar{A}$);
    2. дизъюнкция, т.к. она находится в скобках ($B \vee C$);
    3. дизъюнкция ($\overline{A}\vee \left(B\vee C\right)$) – искомое логическое выражение.

      Кол-во столбцов = $3 + 3=6$.

    Заполним таблицу, учитывая таблицы истинности логических операций.

Рисунок 3.

Пример 2

По данному логическому выражению построить таблицу истинности:

Решение:

    Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

    Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. отрицание ($\bar{C}$);
    2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
    3. конъюнкция ($(A\vee B)\bigwedge \overline{C}$);
    4. отрицание, которое обозначим $F_1$ ($\overline{(A\vee B)\bigwedge \overline{C}}$);
    5. дизъюнкция ($A \vee C$);
    6. конъюнкция ($(A\vee C)\bigwedge B$);
    7. отрицание, которое обозначим $F_2$ ($\overline{(A\vee C)\bigwedge B}$);
    8. дизъюнкция – искомая логическая функция ($\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}$).

Основные логические операции

Отрицание (инверсия), от латинского inversio -переворачиваю:

Соответствует частице НЕ, словосочетанию НЕВЕРНО, ЧТО;

Обозначение: не A, A, -A;

таблица истинности:

Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

Пример: A = {На улице идет снег}.

A={Не верно, что на улице идет снег}

A={На улице не идет снег};

Логическое сложение (дизъюнкция), от латинского disjunctio - различаю:

Соответствует союзу ИЛИ;

Обозначение: +, или, or, V;

Таблица истинности:

Дизъюнкция ложна тогда и только тогда, когда оба высказывания ложны.

Пример: F={На улице светит солнце или дует сильный ветер};

Логическое умножение (конъюкция), от латинского conjunctio -связываю:

Соответствует союзу И

(в естественном языке: и А, и В, как А, так и В,А вместе с В,А, не смотря на В, А, в то время как В);

Обозначение: Ч, , &, и, ^, and;

Таблица истинности:

Конъюкция истинна тогда и только тогда, когда оба высказывания истинны.

Пример: F={На улице светит солнце и дует сильный ветер};

Любое сложное высказывание можно записать с помощью основных логических операций И, ИЛИ, НЕ.С помощью логических схем И, ИЛИ, НЕ можно реализовать логическую функцию, описывающую работу различных устройств компьютера.

2) Таблица истинности - это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (либо, либо).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Конъю́нкция- логическая операция, по своему применению максимально приближённая к союзу "и".логи́ческое умноже́ние, иногда просто "И".

Дизъю́нкция-логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу». логи́ческое сложе́ние, иногда просто «ИЛИ».

Импликация - бинарная логическая связка, по своему применению приближенная к союзам «если…то…».Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону (остриё всегда указывает на следствие).

Эквивале́нция (или эквивале́нтность) - двуместная логическая операция. Обычно обозначается символом ≡ или ↔.

7 . Логические выражения, таблицы истинности логических выражений.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

Логические операции и таблицы истинности

Логическое умножение КОНЪЮНКЦИЯ - это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.

Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ

Логическое отрицание: ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … , ТО …

Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности"

Порядок выполнения логических операций в сложном логическом выражении:

1. инверсия

2. конъюнкция

3. дизъюнкция

4. импликация

5. эквивалентность

Для изменения указанного порядка выполнения операций используются скобки.

Построение таблиц истинности для сложных выражений:

Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)

Количество столбцов = количество переменных + количество логических операций

При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

ПРИМЕР: составить таблицу истинности сложного логического выражения D = неA & (B+C)

А,В, С - три простых высказывания, поэтому:

количество строк = 23 +2 = 10 (n=3, т.к. на входе три элеманта А, В, С)

количество столбцов: 1) А

4) не A это инверсия А (обозначим Е)

5) B + C это операция дизъюнкции (обозначим F)

6) D = неA & (B+C), т.е. D = E & F это операция конъюнкции

А В С E = не А (не 1) F = В+С (2+3) D = E&F (4*5)

При составлении таблицы истинности для логического выражения необходимо:

    Выяснить количество строк в таблице (вычисляется как 2 n , где n – количество переменных).

    Выяснить количество столбцов (определяется как количество переменных + количество логических операций).

    Установить последовательность выполнения логических операций.

    Построить таблицу, указывая названия столбцов и возможные наборы значений исходных логических переменных.

    Заполнить таблицу истинности по столбцам.

Контрольный пример . Построить таблицу истинности для выражения F = (A V B) & (¬A V ¬B).

Количество строк в таблице определяется как 2 2 (2 переменных) + 1 (заголовок таблицы) = 5.

Количество столбцов – как 2 логические переменные (A, B) + 5 логических операций (&, V, ¬, →, ↔).

Расставим порядок выполнения операций:

(A V B) & (¬A V ¬B).

Построим таблицу истинности для данного логического выражения (таблица 5).

Таблица 5 – Таблица истинности для логического выражения

(A V B) & (¬A V ¬B)

Контрольный пример . Построить таблицу истинности для логического выражения X V Y & ¬Z.

Количество строк = 2 3 + 1 = 9.

Количество столбцов = 3 логические переменные + 3 логических операций = 6.

Укажем порядок действий:

Нарисуем и заполним таблицу 6:

Таблица 6 – Таблица истинности для логического выражения

1.4 Построение логических схем

С точки зрения логики электрический ток либо течет, либо не течет; электрический импульс есть или нет; электрическое напряжение есть или нет. Рассмотрим электрические контактные схемы, реализующие логические операции (схемы 1 – 3). На схемах 1 – 3 контакты обозначены латинскими буквами A и B.

Схема 1 – Конъюнкция Схема 2 – Дизъюнкция Схема 3 – Инверсия

(автоматический ключ)

Схема 4 – Конъюнктор Схема 5 – Дизъюнктор Схема 6 – Инвертор

Цепь на схеме 1 с последовательным соединением контактов соответствует логической операции «И» и представляется конъюнктором (схема 4). Цепь на схеме 2 с параллельным соединением контактов соответствует логической операции «ИЛИ» и представляется дизъюнктором (схема 5). Цепь на схеме 3 (электромагнитное реле) соответствует логической операции «НЕ» и представляется инвертором (схема 6).

Именно такие электронные схемы нашли свое применение в качестве элементной базы ЭВМ. Элементы, реализующие базовые логические операции, назвали базовыми логическими элементами или вентилями и характеризуются они не состоянием контактов, а наличием сигналов на входе и выходе элемента. Их названия и условные обозначения являются стандартными и используются при составлении и описании логических схем компьютера.

Логические схемы необходимо строить из минимально возможного количества элементов, что, в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

Правило построения логических схем:

    Определить число логических переменных.

    Определить количество базовых логических операций и их порядок.

    Изобразить для каждой логической операции соответствующий ей вентиль.

    Соединить вентили в порядке выполнения логических операций.

Контрольный пример. Пусть X = Истина (1), Y = Ложь (0). Составьте логическую схему для следующего логического выражения: F = X V Y & X.

1) Две переменные –X и Y.

2) Две логические операции: X V Y & X.

3) Строим схему (рисунок 3).

4) Ответ: 1 V 0 & 1 = 1.

Рисунок 3 – Логическая схема для логического выражения F = X V Y & X