Молекулярная конструкция ионного канала. Ионные каналы

Все каналы, имеющиеся в живых тканях, а сейчас мы знаем несколько сотен разновидностей каналов, можно разделить на два основных типа. Первый тип – это каналы покоя, которые спонтанно открываются и закрываются без всяких внешних воздействий. Они важны для генерации мембранного потенциала покоя. Второй тип - это так называемые gate-каналы, или воротные каналы (от слова «ворота»). В покое эти каналы закрыты и могут открываться под действием тех или иных раздражителей. Некоторые разновидности таких каналов принимают участие в генерации потенциалов действия.

Большинство ионных каналов характеризуются избирательностью (селективностью), то есть через определенный вид каналов проходят только определенные ионы. По этому признаку различают натриевые, калиевые, кальциевые, хлорные каналы. Селективность каналов определяется размерами поры, размерами иона и его гидратной оболочки, зарядом иона, а также зарядом внутренней поверхности канала. Однако встречаются и неселективные каналы, которые могут пропускать сразу два вида ионов: например, калий и натрий. Есть каналы, через которые могут проходить все ионы и даже более крупные молекулы.

Существует классификация ионных каналов по способу активации (рис. 9). Некоторые каналы специфически отвечают на физические изменения в клеточной мембране нейрона. Наиболее яркими представителями этой группы являются потенциал-активируемые каналы . Примерами могут служить чувствительные к потенциалу на мембране натриевые, калиевые, кальциевые ионные каналы, которые отвечают за формирование потенциала действия. Эти каналы открываются при определенном потенциале на мембране. Так, натриевые и калиевые каналы открываются при потенциале около -60 мВ (внутренняя поверхность мембраны заряжена отрицательно по сравнению с наружной поверхностью). Кальциевые каналы открываются при потенциале -30 мВ. К группе каналов, активирующихся физическими изменениями, относятся

Рис 9. Способы активации ионных каналов

(А) Ионные каналы, активируемые изменением мембранного потенциала или растяжением мембраны. (Б) Ионные каналы, активируемые химическими агентами (лигандами) с внеклеточной, либо с внутриклеточной стороны.

также механо-чувствительные каналы , которые отвечают на механические воздействия (растяжение или деформация клеточной мембраны). Ионные каналы другой группы открываются тогда, когда химические вещества активируют специальные рецепторные связывающие центры на молекуле канала. Такие лиганд-активируемые каналы подразделяются на две подгруппы, в зависимости от того, являются ли их рецепторные центры внутриклеточными или внеклеточными. Лиганд-активируемые каналы, отвечающие на внеклеточные стимулы, также называют ионотропными рецепторами. Такие каналы чувствительны к медиаторам и принимают самое непосредственное участие в передаче информации в синаптических структурах. К лиганд-активируемым каналам, активирующимся с цитоплазматической стороны, относятся каналы, чувствительные к изменениям концентрации специфических ионов. Например, кальций-активируемые калиевые каналы активируются локальным повышением концентрации внутриклеточного кальция. Такие каналы играют важную роль в реполяризации клеточной мембраны во время завершения потенциала действия. Помимо ионов кальция, типичными представителями внутриклеточных лигандов являются циклические нуклеотиды. Циклический ГМФ, например, отвечает за активацию натриевых каналов в палочках сетчатки. Такой тип канала играет принципиальную роль в работе зрительного анализатора. Отдельным видом модуляции работы канала путем связывания внутриклеточного лиганда является фосфорилирование/дефосфорилирование определенных участков его белковой молекулы под действием внутриклеточных ферментов – протеинкиназ и протеинфосфатаз.


Представленная классификация каналов по способу активации в значительной степени условна. Некоторые ионные каналы могут активироваться только при нескольких воздействиях. Например, кальций-активируемые калиевые каналы чувствительны также к изменению потенциала, а некоторые потенциал-активируемые ионные каналы чувствительны к внутриклеточным лигандам.

Согласно современным представлениям биологические мембраны образуют наружную оболочку всех живых клеток. Одним из главных структурных признаков является то, что мембраны всегда образуют замкнутые пространства. Этот факт помогает выполнять им важнейшие функции:

    Барьерная (создание концентрационных градиентов, что препятствует свободной диффузии веществ). Это обеспечивает создание потенциала покоя, генерацию потенциала действия.

    Регуляторная (тонкая регуляция внутриклеточного содержимого и внутриклеточных реакций за счет рецепции БАВ, что приводит к изменению активности ферментативных систем мембраны и запуску механизмов вторичных месенджеров (посредников).

    Преобразование энергии раздражителя в электрические сигналы (в рецепторах).

    Высвобождение нейромедиаторов в синоптических окончаниях.

Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых варьирует у разных типов клеток. В настоящее время наиболее признана жидкостно-мозаичная модель клеточной мембраны.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул. При этом гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу, что способствует для образования раздела двух фаз: вне- и внутриклеточной. В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции:

    рецепторную,

    ферментативную,

    образуют ионные каналы,

    являются мембранными насосами,

    переносят ионы и молекулы.

Общее представление о структуре и функциях ионных каналов.

Ионные каналы - особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы).

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на селективные (проницаемы только для одного вида ионов) и неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на Na + , Ca ++ , Cl - , K + -каналы;

3) по способу регуляции делятся на потенциалзависимые и потенциалнезависимые. Потенциалзависимые каналы реагируют на изменение потенциала мембраны клетки, и при достижении потенциалом определенной величины, канал переходит в активное состояние, начиная пропускать ионы по их градиенту концентрации. Так, натриевые и быстрые кальциевые каналы являются потенциалзависимыми, их активация происходит при снижении мембранного потенциала до -50-60 мВ, при этом ток ионов Na + и Ca ++ в клетку вызывает падение потенциала покоя и генерацию ПД. Калиевые потенциалзависимые каналы активируются при развитии ПД и, обеспечивая ток ионов К + из клетки, вызывают реполяризацию мембраны.

Потенциалнезависимые каналы реагируют не на изменение мембранного потенциала, а на взаимодействие рецепторов, с которыми они взаимосвязаны, и их лигандов. Так, Cl - -каналы связаны с рецепторами g-аминомасляной кислоты и при взаимодействии этих рецепторов с ней они активируются и обеспечивают ток ионов хлора в клетку, вызывая ее гиперполяризацию и снижение возбудимости.

3. Мембранный потенциал покоя и его происхождение.

Термином «мембранный потенциал покоя» принято называть трансмембранную разность потенциалов, существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиологического покоя, ее внутренний заряд отрицателен по отношению к наружному, условно принимаемому за нуль. У разных тканей мембранный потенциал характеризуется разной величиной: самый большой у мышечной ткани -80 -90 мВ, у нервной -70 мВ, у соединительной -35 -40 мВ, у эпителиальной -20мВ.

Образование МПП зависит от концентрации ионов К + , Nа + , Са 2+ , Сl - , и от особенностей строение мембраны клетки. В частности, ионные каналы, имеющиеся в мембране, обладают свойствами:

1. Селективностью (избирательной проницаемостью)

2. Электровозбудимостью.

В состоянии покоя натриевые каналы все закрыты, а большинство калиевых – открыты. Каналы могут открываться и закрываться. В мембране существуют каналы утечки (неспецифические), которые проницаемы для всех элементов, но более проницаемы для калия. Калиевые каналы всегда открыты, и ионы движутся через эти каналы по концентрационному и электрохимическому градиенту.

Согласно мембранно-ионной теории наличие МПП обусловлено:

    непрерывным движением ионов по ионным каналам мембраны,

    постоянно существующей разностью концентраций катионов по обе стороны мембраны,

    непрерывной работой натрий-калиевого насоса.

    различной проницаемостью каналов для этих ионов.

Ионов К + много в клетке, снаружи его мало, Nа + - наоборот, много вне клетки и мало в клетке. Ионов Сl - чуть больше снаружи клетки, чем внутри. Внутри клетки много органических анионов, которые в основном и обеспечивают отрицательный заряд внутренней поверхности мембраны.

В состоянии покоя мембрана клетки проницаема только для ионов К + . Ионы калия в состоянии покоя постоянно выходят в окружающую среду, где высокая концентрация Nа + . Поэтому, в состоянии покоя, наружная поверхность мембраны заряжена положительно. Высокомолекулярные органические анионы (белки) концентрируются у внутренней поверхности мембраны и определяют ее отрицательный заряд. Они же электростатически удерживают ионы К + с другой стороны мембраны. Основную роль в образовании МПП принадлежит ионам К + .

Несмотря на потоки ионов через каналы утечки разность концентрации ионов не выравнивается, т.е. сохраняется всегда постоянной. Этого не происходит потому, что в мембранах существуют Nа + - К + - насосы. Они непрерывно откачивают Nа + из клетки и против градиента концентрации вводят в цитоплазму К + . На 3 иона Nа + , которые выводятся из клетки, внутрь вводится 2 иона К + . Перенос ионов против градиента концентрации осуществляется активным транспортом (с затратой энергии). В случае отсутствия энергии АТФ клетка погибает.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Когда внутренний заряд мембраны становится менее отрицательным наступает деполяризация мембраны и начинает развиваться потенциал действия.

4.Потенциал действия и механизм его происхождения.

Соотношение фаз возбудимости с фазами потенциала действия.

Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и секреторных клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения.

Порог раздражения – эта минимальная сила, при которой возникает минимальная ответная реакция. Для характеристики порога раздражения используется понятие реобаза (рео – ток, база – основной).

Кроме пороговых различают подпороговые раздражители, которые не могут вызвать ответной реакции, но вызывают сдвиг обмена веществ в клетке. Также существуют надрпороговые раздражители.

Возникнув, ПД распространяется вдоль мембраны, не изменяя своей амплитуды. В нем различают фазы:

    Деполяризации:

а) медленная деполяризация;

б) быстрая деполяризация.

    Реполяризация:

а) быстрая реполяризация;

б) медленная реполяризация (отрицательный следовой потенциал)

    Гиперполяризация (положительный следовой потенциал)

Строение и функции ионных каналов. Ионы Na + , K + , Са 2+ , Сl - проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (ди­аметр 0,5-0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. На­иболее распространенным является метод фиксации напряжения, или «voltage-clamp» (рис. 2.2). Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный по­тенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соот­ветствии с законом Ома величина тока пропорциональна проводи­мости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембран­ная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для раз­личных ионов (табл. 2.1). Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом ло­кальной фиксации потенциала «path-clamp»; рис. 2.3, А). Стеклян­ный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разре­жение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регист­рируют активность одиночного канала. Система раздражения и ре­гистрации активности канала мало отличается от системы фиксации напряжения.

Таблица 2.1. Важнейшие ионные каналы и ионные токи возбудимых клеток



Примечание. ТЭА - тетраэтиламмоний; ТТХ - тетродотоксин.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диа­лиза, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Ока­залось, что часть ионного канала, открытая во внеклеточное про­странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мем­браны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так назы­ваемые воротные механизмы).

5. Понятие о возбудимости. Параметры возбудимости нервно-мышечной системы: порог раздражения (реобаза), полезное время (хронаксия). Зависимость силы раздражения от времени его действия (кривая Гоорвега-Вейса). Рефрактерность.

Возбудимость – способность клетки отвечать на раздражение формирование ПД и специфической реакцией.

1) фаза локального ответа – частичная деполяризация мембраны (вхождение Na + в клетку). Если нанести раздражитель небольшой, то ответ – сильнее.

Локальная деполяризация – фаза экзальтации.



2) фаза абсолютной рефрактерности – свойство возбудимых тканей не формировать ПД ни при каком по силе раздражителе

3) фаза относительной рефрактерности.

4) фаза медленной реполяризации – раздражение – опять сильный ответ

5) фаза гиперполяризации – возбудимость меньше (субнормальная), стимул должен быть большим.

Функциональная лабильность – оценка возбудимости ткани через максимально возможное количество ПД в единицу времени.

Законы возбуждения:

1) закон силы – сила раздражителя должна быть пороговой или надпороговой (минимальная величина силы, которая вызывает возбуждение). Чем сильнее раздражитель, тем сильнее возбуждение – только для объединений ткани (нервный ствол, мышца, исключение – ГМК).

2) закон времени – длительной действующего раздражителя должна быть достаточной для возникновения возбуждения.

Между силой и временем обратно пропорциональная зависимость в границах между минимальным временем и минимальной силой. Минимальная сила – реобаза – сила, которая вызывает возбуждение и не зависит от длительности. Минимальное время – полезное время. Хронаксия – возбудимость той или иной ткани, время, при котором возникает возбуждение, равно двум реобазам.

Чем больше сила, тем больше ответ до определенного значения.

Факторы, создающие МПП:

1) разность концентраций натрия и калия

2) различная проницаемость для натрия и калия

3) работа Na-К насоса (3 Na + выводится, 2 К + возвращается).

Зависимость между силой раздражителя и продолжительностью его воздействия, необходимого для возникновения минимальной ответной реакции живой структуры, очень хорошо можно проследить на так называемой кривой силы - времени (кривая Гоорвега-Вейса-Лапика).

Из анализа кривой следует, что, как бы ни велика была сила раздражителя, при недостаточной длительности его воздействия ответной реакции не будет (точки слева от восходящей ветви гиперболы). Аналогичное явление наблюдается при продолжительном действии подпороговых раздражителей. Минимальная сила тока (или напряжения), способная вызвать возбуждение, названа Лапиком реобазой (отрезок ординаты ОА). Наименьший промежуток времени, в течение которого ток, равный по силе удвоенной реобазе, вызывает в ткани возбуждение, называют хронаксией (отрезок абсциссы OF), которая представляет собой показатель пороговой длительности раздражения. Хронаксия измеряется в δ (тысячные доли секунды). По величине хронаксии можно судить о скорости возникновения возбуждения в ткани: чем меньше хронаксия, тем быстрее возникает возбуждение. Хронаксия нервных и мышечных волокон человека равна тысячным и десятитысячным долям секунды, а хронаксия так называемых медленных тканей, например мышечных волокон желудка лягушки, - сотым долям секунды.

Определение хронаксии возбудимых тканей получило широкое распространение не только в эксперименте, но и в физиологии спорта, в клинике. В частности, путем измерения хронаксии мышцы невропатолог может установить наличие повреждения двигательного нерва. Необходимо отметить, что раздражитель может быть достаточно сильным, иметь пороговую длительность, но низкую скорость нарастания во времени до пороговой величины, возбуждение в этом случае не возникает. Приспособление возбудимой ткани к медленно нарастающему раздражителю получило название аккомодации. Аккомодация обусловлена тем, что за время нарастания силы раздражителя в ткани успевают развиться активные изменения, повышающие порог раздражения и препятствующие развитию возбуждения. Таким образом, скорость нарастания раздражения во времени, или градиент раздражения, имеет существенное значение для возникновения возбуждения.

Закон градиента раздражения. Реакция живого образования на раздражитель зависит от градиента раздражения, т. е. от срочности или крутизны нарастания раздражителя во времени: чем выше градиент раздражения, тем сильнее (до определенных пределов) ответная реакция возбудимого образования.

Следовательно законы раздражения отражают сложные взаимоотношения между раздражителем и возбудимой структурой при их взаимодействии. Для возникновения возбуждения раздражитель должен иметь пороговую силу, обладать пороговой длительностью и иметь определенную скорость нарастания во времени.

6. Ионные насосы (АТФ-азы): K+-Na+-евая, Ca2+-евая (плазмолеммы и саркоплазматического ретикулума), H+–K+-обменник.

Согласно современным представлениям, в биологических мембранах имеются ионные насосы,работающие за счет свободной энергии гидролиза АТФ, - специальные системы интегральных белков (транспортные АТФазы).

В настоящее время известны три типа электрогенных ионных насосов, осуществляющих активный перенос ионов через мембрану (рис.13).

Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток.

При работе К+-Na+-АТФазы за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создается повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная натрия, что имеет огромное физиологическое значение.

Признаки «бионасоса»:

1. Движение против градиента электрохимического потенциала.

2. поток вещества сопряжён с гидролизом АТФ (или другого источника энергии).

3. асимметрия транспортной машины.

4. насос in vitro способен гидролизовать АТФ только в присутствии тех ионов, которые он переносит in vivo.

5. при встраивании насоса в искусственную среду он способен сохранять селективность.

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее прослеживаются основные этапы этого сложного ферментативного процесса. В случае К+-Nа+-АТФазы насчитывается семь этапов переноса ионов, сопряженных с гидролизом АТФ.

На схеме видно, что ключевыми этапами работы фермента являются:

1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния);

2) связывание комплексом трех ионов натрия;

3) фосфорилирование фермента с образованием аденозиндифосфата;

4) переворот (флип-флоп) фермента внутри мембраны;

5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны;

6) обратный переворот ферментного комплекса с переносом ионов калия внутрь клетки;

7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата (Р).

Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрация ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами:

· пропускают все типы ионов, но проницаемость для ионов K + значительно выше, чем для других ионов;

  • всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:

· пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;

  • могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работойворотного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, т.н. активационные ворота и инативационные ворота, изменяя свою конформацию могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 2.3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

· хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда.

  • потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определнного уровня, который называют критичеким уровнем деполяризации (КУД);

По способу активации выделяют:

· потенциал-активируемые ионные каналы (переход из закрытого в открытое состояние и обратно осуществляется конформацией белковой молекулы при изменении потенциала мембраны). Примером может служить потенциал-зависимый натриевый канал, определяющий деполяризацию клетки при генерации потенциала действия.

· механочувствительные ионные каналы (открываются при воздействии на мембрану клетки механического стимула, например, при активации механорецепторов кожи).

· лиганд-активируемые ионные каналы. По способу активации они подразделены на две группы (экстраклеточные и внутриклеточные) в зависимости от того, с какой стороны мембраны воздействует лиганд. Если стимул (например, ацетилхолин) при осуществлении синаптической передачи возбуждения в нервно-мышечном синапсе действует на рецептор (в данном примере холинорецептор, представляющий собой одну из нескольких белковых субъединиц ионного канала), расположенный на внешней поверхности мембраны мышечной клетки, откроется ионный канал, проницаемый для катионов. Если лиганд-активируемые каналы зависят от вторичных посредников в клетке, их переход в открытое состояние осуществляется при изменении концентрации определенных ионов в цитоплазме. Примером может служить кальций-активируемый калиевый канал, активирующийся при увеличении концентрации ионов кальция в клетке. Такие каналы принимают участие в реполяризации мембраны при завершении потенциала действия.

Понятие о мембранном потенциале, равновесном ионном потенциале и потенциале покоя. Условия и причины сущ потен покоя. Урав постоян поля.Функц мемб птенциала.

Условия и причины существования потенциала покоя.

Расчеты и экспериментальные данные свидетельствуют о том, что все клетки организма в состоянии «оперативного» покоя характеризуются определенной степенью поляризации. Плазмолемма каждой клетки заряжена, и в покое на ее внутренней поверхности поддерживается отрицательный относительно межклеточной среды потенциал. Трансмембранная разность потенциалов в разных клетках различна, но всюду достигает нескольких десятков милливольт. С помощью микроэлектродной техники удалось в эксперименте прямо измерить реальную разность потенциалов по обе стороны клеточной мембраны.

Какие ионы и ионные каналы обеспечивают биоэлектрогенез? К настоящему времени известно, что основной вклад в потенциал покоя и потенциал действия вносят четыре иона. Na + K + Ca ++ Cl - способны проникать (или не проникать) в определенных условиях через соответствующие ионные каналы.

Для того, чтобы определенный ион (имеющий заряд) мог проникнуть через мембрану, необходимо, чтобы для этого имелись условия:

1.Наличие концентрационного градиента (создается работой ионных насосов)

2.Наличие электрохимического градиента (создается суммой концентраций заряженных частиц и свойствами ионных каналов разобщать катионы и анионы по обе стороны мембраны).

3.Наличие подходящих каналов в открытом состоянии.

При потенциале покоя внутренняя сторона клеточной мембраны имеет заряд, знак которого (отрицательность) определяется наличием в цитоплазме органических анионов (белков и аминокислот), неспособных проникать через ионные каналы, и дефицитомих противоионов – катионов калия, способных проникать через калиевые ионные каналы, вследствие чего в клетке создается избыток отрицательных ионов, а в интерстиции –избыток положительного заряда. Величину отрицательного заряда в клетке и положительного заряда в межклеточном пространстве удается предсказывать математически, но только для относительно простых случаев, например, для гигантского аксона кальмара.

Величина потенциала покоя описывается с известным приближением уравнением постоянного поля, предложенным Ходжкиным, Гольдманом и Кацем.

Vм=RT/zFln {(pkо+pNa o +pCl i)/ (pki+pNa i +pCl i)}

Не следует путать понятия мембранный потенциал , равновесный потенциал и потенциал покоя .

Мембранный потенциал задается суммой действующих по обе стороны мембраны зарядов, определяющей способность определенных ионов проникать через ионные каналы.

Равновесный потенциал – это такой потенциал плазмолеммы клетки, при котором суммарный ток определенного иона через мембрану равен нулю, несмотря на возможность отдельных ионов проникать через открытые каналы в обмен на такие же ионы, следующие в противоположном направлении. Определяется уравнением Нернста.

Функции мембранного потенциала покоя:

1. Поляризация мембраны является условием для возбуждения и торможения.

2.Поляризация определяет объем выделения медиатора из пресинаптического окончания.

3. ПП создает условия для нахождения потенциалзависимых каналов в закрытом состоянии (поляризация мембраны создает условия для формирования потенциала действия).


ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

Понятие о нервном центре.

Нервный центр - совокупность структур центральной нервной системы, координированная деятельность которых обес­печивает регуляцию отдельных функций организма или опреде­ленный рефлекторный акт. Представление о структурно-функци­ональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. Свойства нерв центров:

2.Замедленное проведение возбуждения по нейронным совокупностям ЦНС. Синаптическая задержка T син одного межклеточного контакта приблизительно равна 0,5-2 мс. Если имеется n нейронов в сети, общий латентный период проведения сигнала в мозге соответствует n×T син и может быть весьма значительным. Косвенно, зная время проведения сигнала по ЦНС (вычисляется с учетом общего времени рефлекса и времени, затраченного на проведение по нервным стволам), можно оценить количество синаптических переключений (n) в дуге конкретного рефлекса.

4.Односторонность проведения возбуждения, а также дивергенция и конвергенция синаптических входов создают морфологический субстрат для циркуляции возбуждения (реверберации) по замкнутым нейронным цепям. Считается, что это явление лежит в основе кратковременной памяти.

5.Для определенных нейронов, ассоциированных в ядра, характерна фоновая активность . Она определяется свойствами мембраны и зависит от спонтанной деполяризации. Другие нейроны являются «молчащими» и генерируют ПД только при активации синаптических входов.

6.Для нейронов и имеющихся на их поверхности синапсов характерна чувствительность для различным веществ, сигнальных молекул и метаболитов, содержащихся в ликворе.

7. характерна утомляемость, одной из причин которой является уменьшение запасов имеющегося медиатора и низкая скорость его синтеза.

8. пласичность. Облегчение, потенциация (тетаническая посттетаническая, долговременная), депрессия определяются свойствами рецепторов, следовыми процессами и появлением новых синаптических контактов или рецепторов на поверхности нейронов.

Для нервных сетей мозга характерно направленное, одностороннее (линейное) проведения возбуждения . Если имеется цепочка нейронов, связанных между собой синаптическими контактами, то из-за свойства химических синапсов выделять медиатор из пресинаптического окончания в синаптическую щель и рецептировать его рецептором, локализованным на мембране постсинаптической, вектор распространения возбуждения в нейронной сети направлен в сторону последующего постсинаптического нейрона. Общим примером данного принципа является закон Белла– Мажанди (афферентные волокна входят в спиной мозг через дорсальные, двигательные волокна покидают спинной мозг через вентральные корешки).

Процессы конвергенции заключаются в схождении различ­ных импульсных потоков от нескольких нервных клеток к одному и тому же нейрону (см. раздел 4.1.4). Процесс конвергенции ха­рактерен не только для однотипных нервных клеток. Например, на мотонейронах спинного мозга, кроме первичных афферентных во­локон, конвергируют волокна различных нисходящих трактов от супраспинальных и собственно спинальных центров, а также от возбуждающих и тормозных вставочных промежуточных нейронов. В результате мотонейроны спинного мозга выполняют функцию общего конечного пути для многочисленных нервных образований, включая и надсегментный аппарат головного мозга, имеющих от­ношение к регуляции двигательной функции.

Дивергенцией называется способность нервной клетки устанавливать многочисленные синаптические связи с раз­личными нервными клетками. Благодаря этому одна нервная клет­ка может участвовать в нескольких различных реакциях, пере­давать возбуждение значительному числу других нейронов, кото­рые могут возбудить большее количество нейронов, обеспечивая широкую иррадиацию возбудительного процесса в центральных нервных образованиях.

Строение нейрона.

Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны - нейроны, получающие информацию от спи-нальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4)) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегмен­тами.

Мотонейроны. Аксон мотонейрона своими терминалями иннер-вирует сотни мышечных волокон, образуя мотонейронную единицу

Интернейроны. Эти промежуточные нейроны, генерирующие им­пульсы с частота до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функ­цией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения.

Нейроны симпатического отдела автономной системы. Распо­ложены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3-5 в секунду).

Нейроны парасимпатического отдела автономной системы. Локализуются в сакральном отделе спинного мозга и являются фоновоактивными.

Нейроглия, или глия, - совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз­личной формы. Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше, чем нервные; С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается. Классификация:

Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Раз­меры астроцитов 7-25 мкм. располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохон­дрии. астроциты служат опорой нейронов, обеспечи­вают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полно­стью покрывая их. В итоге между нейронами и капиллярами рас­полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.

Олигодендроциты -малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендро­цитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.

Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Ис­точником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.

14.Современные представления о межклеточных контактах.

Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).

Классификация синапсов. Синапсы классифицируются по мес­тоположению, характеру действия, способу передачи сигнала.

По местоположению выделяют нервно-мышечные,синапсы и нейронейрональные, последние в свою очередь делятся на аксо-соматические, аксоаксональные, аксодендритические, дендросомати-ческие.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

Поспособу передачи сигнала синапсы делятся на элек­трические, химические, смешанные.

Характер взаимодействия нейронов. Определяется способом это­го взаимодействия: дистантное, смежное, контактное.

Дистантное взаимодействие может быть обеспечено двумя нейронами, расположенными в разных структурах организма. Например, в клетках ряда структур мозга образуются нейрогормоны, нейропептиды, которые способны воздействовать гуморалыю на ней­роны других отделов.

Смежное взаимодействие нейронов осуществляется в случае, когда мембраны нейронов разделены только межклеточным пространством. Обычно такое взаимодействие имеется там, где меж­ду мембранами нейронов нет глиальных клеток. Такая смежность характерна для аксонов обонятельного нерва, параллельных волокон мозжечка и т. д. Считают, что смежное взаимодействие обеспечивает участие соседних нейронов в выполнении единой функции. Это происходит, в частности, потому, что метаболиты, продукты актив­ности нейрона, попадая в межклеточное пространство, влияют на соседние нейроны. Смежное взаимодействие может в ряде случаев обеспечивать передачу электрической информации от нейрона к нейрону

    селективные (проницаемы только для одного вида ионов). По характеру ионов, которые они пропускают на Na+, Ca++, Cl-, K+-каналы;

    неселективные (проницаемы для нескольких видов ионов);

2) По способу регуляции делятся на:

    потенциалзависимые (электровозбудимые, потенциалуправляемые)

    Потенциалнезависимые (хемовозбудимые, (лиганд-рецептор -зависимые), хемоуправляемые)

    Механовозбудимые (механоуправляемые).

Потенциал покоя и действия. Мембранно-ионная теория происхождения потенциала покоя и действия. Местное и распространяющееся возбуждение.

Установлено, что мембрана любой живой клетки поляризована, внутренняя поверхность элетроотрицательна по отношению к наружной. Мембранный потенциал равен - (минус) 70 - (90) мв. При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Формирование и сохранение потенциала покоя обусловлено непрерывным движением ионов по ионным каналам мембраны, постоянно существующей разностью концентраций катионов по обе стороны мембраны, непрерывной работой натрий-калиевого насоса. За счет постоянного удаления из клетки иона натрия и активного переноса в клетку иона калия сохраняется разность концентраций ионов и поляризация мембраны. Концентрация иона калия в клетке превышает внеклеточную концентрацию в 30 - 40 раз, внеклеточная концентрация натрия примерно на порядок выше внутриклеточной. Электроотрицательность внутренней поверхности мембраны обусловлена наличием в клетке избытка анионов органических соединений, абсолютная величина потенциала покоя (мембранный потенциал, трансмембранный потенциал, равновесный калиевый потенциал) обусловлена главным образом соотношением внутри- и внеклеточной концентраций ионов калия и удовлетворительно описывается уравнением Нернста : (1)

Современная теория учитывает так же:

1) разницу концентраций ионов натрия, хлора, кальция;

2) проницаемость (Р) мембраны для каждого иона в текущий момент времени.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

Возникновение потенциала действия (деполяризация)

I – мембранный потенциал

1 - потенциал покоя, 2-- медленная деполяризация, 3 - быстрая деполяризация, 4 - быстрая реполяризация, 5 – медленная реполяризация, 6- гиперполяризация

II - возбудимость

а – нормальная, б – повышенная, в –абсолютная рефрактерность,

г – относительная рефрактерность, д – супернормальность,

е -субнормальность

Потенциал действия (ПД) развивается при наличии исходной поляризации мембраны (потенциала покоя) благодаря изменению проницаемости ионных каналов (натриевых и калиевых). После действия раздражителя потенциал покоя уменьшается, активация каналов повышает их проницаемость для ионов натрия , который входит в клетку и обеспечивает процесс деполяризации. Поступление в клетку иона натрия уменьшает электроотрицательность внутренней поверхности мембраны, что способствует активации новых ионных натриевых каналов и дальнейшему поступлению в клетку иона натрия. Действуют силы:

а) электростатическое притяжение внутриклеточных анионных группировок;

б) концентрационный градиент ионов натрия, направленный внутрь клетки.

Пик потенциала действия обусловлен равновесием поступления в клетку ионов натрия и равным их удалением под влиянием сил отталкивания одноимённо заряженных ионов.