Выбор sdr приемника. Еще раз о приеме КВ на RTL-SDR


Сегодня, наверное, уже нет радиолюбителя, не знающего, хотя бы в общих чертах, что такое SDR (Software-Defined Radio). На эту тему написано уже много, и в рамках этой статьи нет необходимости подробно рассказывать, что это такое и как это работает. Будем считать, что некоторое представление и некоторый опыт в данной области у читателя имеются.

Такая сравнительно новая технология обработки сигнала всё сильнее проникает в нашу радиолюбительскую жизнь, и в эфире уже работают много радиостанций с использованием SDR-тран-сиверов. Некоторые радиолюбители слушают эфир и визуально наблюдают обстановку на SDR-приёмниках, но свой сигнал передают в эфир по-прежнему с помощью обычного "классического" трансивера. Ведь помимо отличного качества приёма сигнала радиолюбителей в технике SDR привлекает наличие красивой и информативной панорамы эфира на экране компьютера. А вот работа на передачу с обычного трансивера предполагает и свои преимущества. Например, большинство импортных трансиверов, как правило, имеют на выходе "стандартные" 100 Вт, а многие модели ещё и встроенный автоматический тюнер. Большинство же предлагаемых для покупки или повторения SDR-трансиверов обеспечивают небольшую выходную мощность передатчика (не более 20 Вт) и не имеют встроенного антенного тюнера. Следовательно, в дальнейшем придётся позаботиться ещё и о дополнительном линейном усилителе мощности, и о выходных ФНЧ. В целом SDR-транси-вер может обойтись совсем не дёшево.

Для многих любителей существует ещё и некоторый психологический барьер - виртуальный. Трансивер на экране компьютера не всех устраивает, и человек предпочитает иметь на столе не невзрачную коробку с парой свето-диодов и разъёмов, а реальный трансивер с красивыми кнопками и ручками, которые можно потрогать и покрутить. Иметь и то и другое также могут далеко не все желающие, и при выборе большинство предпочитают всё-таки "классику". Так что же делать в случае, если имеется неплохой обычный трансивер, денег на приобретение отдельного SDR-трансивера нет, а пользоваться "благами" SDR и модно, и хочется?

Существуют два основных пути со своими достоинствами и недостатками. Рассмотрим их отдельно.

Путь первый - приобрести или изготовить отдельный полноценный SDR-приёмник, а на передачу работать по старинке, с обычного трансивера. В этом случае необходимо позаботиться как минимум о двух вещах - коммутации антенны, которая должна подключаться к SDR-приёмнику в режиме приёма и к выходу трансивера при передаче, и о синхронизации частоты настройки и режимов работы трансивера и отдельного SDR-приёмника. Если вмешательство в трансивер не планируется и не приемлемо для его владельца, то это очень удобный вариант реализации SDR-приёма. Правда, не самый дешёвый и простой.

Как удачный пример, можно привести приёмник "Hanter" (цена около 200 долл. США), имеющий встроенный блок коммутации антенны. Схема этого приёмника доступна на сайте производителя . Там можно почерпнуть для себя многие интересные схемотехнические решения (блок коммутации в частности) в случае, если вы имеете желание сделать подобную систему SDR-приёма самостоятельно.

Что касается синхронизации настройки SDR-приёмника и трансивера, то не всё так просто при самостоятельном изготовлении. Приёмник должен уметь обмениваться информацией о частоте и режимах работы с SDR-про-граммой, которая, в свою очередь, также должна уметь общаться с другими программами. И выбор тут, в принципе, невелик. В основном для управления приёмником все используют USB-интерфейс компьютера и пользуются синтезатором частоты на основе микросхемы Si570 (по причине доступности программного обеспечения для микроконтроллера управления синтезатором и приёмником). Этот синтезатор применяется во многих SDR-приёмниках и трансиверах серии "SoftRock", а также его можно приобрести как отдельное от приёмника устройство .

Информации по изготовлению, а также о возможностях приобретения различных SDR-наборов в Интернете очень много, и при желании не составит никакого труда найти её в любой поисковой системе. Достаточно ввести ключевые слова "sdr softrock" или подобные. Для примера, можно начать обзор с очень информативного и интересного сайта RV3APM . Как раз на одной из страниц этого сайта вкратце рассказывается о синхронизации отдельного приёмника и трансивера.

Второй путь реализации SDR-при-ёма - подключение простейшего SDR-приёмника (панорамной приставки) на одну фиксированную частоту к тракту ПЧ трансивера. Этот способ подробно описан на сайте WU2X - автора специальной программы POWERSDR/IF STAGE . В качестве примера там же приводится описание подключения такого SDR-приёмника к выходу ПЧ трансивера TS-940S.

Единственный недостаток такой схемы подключения в том, что не каждый трансивер имеет буферизированный выход ПЧ, да ещё и широкополосный, т. е. отведённый от тракта приёма до фильтра основной селекции. И если такого выхода ПЧ нет, его придётся делать самому или же отказаться от этого способа и вернуться к первому - отдельному приёмнику. Если же вы достаточно квалифицированный радиолюбитель, то без труда сможете найти на схеме своего трансивера первый смеситель приёмника и подключить к нему буферный каскад, с выхода которого можно вывести сигнал ПЧ приёмника на заднюю панель трансивера. Для примера, на рис. 1 приведён фрагмент схемы трансивера IC-735 с встроенным буферным усилителем.

Итак, предположим, что выход ПЧ у нас есть. Теперь необходимо выбрать приёмник. На этом этапе также произойдёт некоторое разделение вариантов, в зависимости от частоты ПЧ трансивера.

Если частота ПЧ "низкая" - меньше 40 МГц, да ещё и "круглая", например, 9 МГц, то вам повезло. Самый простой вариант - купить, например, здесь , недорогой (21 долл. США) набор одно-диапазонного SDR-приёмника "Softrock 6.2" или подобный, рассчитанный на приём диапазона 40 или 30 метров, и кварцевый резонатор на 12 МГц. Схема гетеродина приёмника позволяет возбудить этот резонатор на третьей гармонике, т. е. на частоте 36 МГц. Атак как сигнал гетеродина в приёмнике делится на четыре перед подачей на смеситель, то получим частоту SDR-приёма около 9 МГц. Это самый дешёвый и, можно сказать, идеальный вариант.

Но можно собрать подобный приёмник с фиксированной ПЧ и самостоятельно. В сети Интернет предложено немало вариантов простых приёмников на различных комплектующих. И здесь нельзя не упомянуть известного и уважаемого радиолюбителя Таsа (YU1LM), который разработал и опубликовал множество разновидностей SDR-при-ёмников и трансиверов. Очень полезно посетить его сайт , где можно найти схемы и подробные описания работы его конструкций, рисунки печатных плат (правда, всё это на английском языке).

Всё хорошо и понятно, если есть в наличии кварцевый резонатор на необходимую частоту. А если его нет? Что делать? Выбор невелик. Или отказаться от этой затеи, или сделать синтезатор частоты, о котором пойдёт речь чуть ниже.

Теперь рассмотрим самый сложный (и, к сожалению, самый распространённый) вариант - трансивер с "высокой" ПЧ и, соответственно, преобразованием "вверх". По этой структуре выполнено подавляющее большинство фирменных трансиверов, но далеко не все цифровые микросхемы, обычно применяемые в SDR-приёмниках, способны работать на частотах порядка 80 МГц. Также необходимо иметь кварцевый резонатор на нужную частоту. Есть и другие сложности.

В этом случае авторы некоторых конструкций применяют двойное преобразование частоты. Сигнал первой ПЧ трансивера (45...80 МГц в большинстве случаев) переносится на вторую ПЧ, на частоту, на которой способен работать SDR-приёмник. Это не самый лучший путь, так как двойное преобразование снижает достижимые динамические параметры приёмника и может создать дополнительные внутренние помехи приёму при неудачном выборе частот преобразования.

К динамическому диапазону панорамной приставки нужно относиться серьёзно, даже если вы продолжаете вести приём на трансивере, а на панораму просто смотрите. Любые перегрузки, как первого смесителя трансивера, так и смесителя SDR-приёмника, а также входа звуковой карты компьютера, приведут к появлению на картине панорамы ложных, несуществующих реально сигналов. Любые продукты ограничения по амплитуде и интермодуляционные составляющие будут прекрасно видны на панораме.

Поэтому нужно хорошо согласовывать весь тракт SDR-приёма по уровням сигналов. Не допускать перегрузок. Простой критерий - на самом "тихом" диапазоне шумовая дорожка панорамы должна лишь немного приподниматься вверх при подключении антенны к трансиверу, т. е. необходим небольшой запас по чувствительности, но не более. Не следует допускать ситуаций, когда шум эфира при подключении антенны поднимает шумовую дорожку панорамы на полэкрана, т. е. на десятки децибелл. Вы просто потеряете сигнал в шумах, ограничив при этом динамический диапазон всей системы. Пользуйтесь аттенюаторами трансивера или отдельным аттенюатором на входе панорамной приставки.

Также не пренебрегайте хорошим полосовым фильтром на частоту принимаемой ПЧ на входе вашего SDR-при-ёмника. На выходе первого смесителя трансивера присутствует широкий спектр всевозможных комбинационных частот, а SDR-приёмник имеет и побочные каналы приёма (на гармониках гетеродина, например), и возможна ситуация появления помех приёму по этой причине. И если в обычном трансивере мы слышим помехи, только когда они попадают в полосу пропускания фильтра основной селекции, то при SDR-приёме мы видим на панораме всё. Это общие рекомендации. Далее перейдём к рассмотрению предлагаемой для повторения панорамной приставки, схема которой показана на рис. 2.

Устройство представляет собой приёмник прямого преобразования на фиксированную частоту и очень близко по схемотехническим решениям ^"SoftRock 6.2". Этот вариант имеет отличные динамические параметры и очень хорошее соотношение простота/цена/качество.

Основное отличие от оригинального "SoftRock" - это применение вместо кварцевого генератора синтезатора частоты на микросхеме Si570 CAC000141G (DD2). Такое решение позволяет настроить панорамную приставку на частоту приёма сигнала первой ПЧ любого трансивера, и необходимость в поиске нужного кварцевого резонатора отпадает. Это не дешёвое решение (микросхема Si570 стоит примерно 30...40 долл. США), но наиболее качественное и простое схемотехнически. С таким синтезатором можно принимать сигналы от 1 до 80 МГц и даже выше. Микросхема Si570 (КМОП версии) способна генерировать сигнал с максимальной частотой до 160 МГц, но максимальная частота приёма будет ограничена быстродействием применённых в смесителе аналоговых ключей - микросхемы FST3253 (DD4). Реально проверена работа приставки на частоте ПЧ трансивера ICOM - 70,4515 МГц.

Схему приёмника можно выбрать в одном из двух вариантов. Приёмная часть и синтезатор одинаковы для обеих версий панорамной приставки, отличие только в фазовращателях. Какой вариант выбрать - решать вам. Печатная плата также разработана для двух вариантов.

Первый вариант - с применением фазовращателя на делителе на четыре, т. е. самый распространённый, обеспечивающий в нашем случае максимальную частоту приёма 40 МГц (160 МГц/4) и не требующий настройки фазовращателя. Этот вариант удобен для трансиверов с низкой ПЧ.

Второй вариант - применение в качестве фазовращателя интегрирующей RC-цепи, задерживающей сигнал одного из каналов фазовращателя относительно другого канала на 90о по фазе (рис. 3). Этот вариант требует подбора ёмкости конденсаторов фазовращателя и точной настройки подстроечным резистором.

Такой фазовращатель вместо делителя частоты на четыре позволяет сформировать два сигнала непосредственно на рабочей частоте синтезатора, без её деления. В случае с синтезатором на Si570 возможно получение выходной частоты фазовращателя вплоть до 160 МГц. Эта максимальная частота будет определяться быстродействием применённых инверторов и влиянием на высоких частотах ёмкости монтажа.

Аналогичный вариант применён в приёмнике YU1LM "Monoband SDR HF receiver DR2C". На его сайте можно найти полную схему приёмника с подробным описанием работы этого фазовращателя. Также на схеме YU1LM приведены ориентировочные значения ёмкости конденсатора фазовращателя, в зависимости от принимаемой частоты (частоты первой ПЧ вашего трансивера).

Входной полосовой фильтр 2-го порядка - C17L1C18 - достаточно широкополосный. На схеме указаны номиналы для частоты ПЧ в полосе 8.10,7 МГц. Для другого значения ПЧ необходимо пересчитать номиналы элементов фильтра. Это очень просто и удобно делать с помощью программы RFSim99 .

Для управления синтезатором частоты Si570 применён популярный и дешёвый микроконтроллер Atmega8 (DD1) с записанными в его EEPROM-па-мять кодами программы из файла SOFT_UNIPAN.hex.

Катушка L1 содержит 24 витка, намотанных проводом ПЭВ-2 0,35 на кольцевом магнитопроводе Т30-6 фирмы Amidon. Трансформатор T1 смесителя намотан на аналогичном магнитопроводе и таким же проводом. Число витков первичной обмотки - 9, вторичной - 2x3.

Микросхему 0PA2350 (DA4) можно заменить другим малошумящим сдвоенным ОУ. Усиление корректируют подбором резисторов R8 и R10.

Всё устройство собрано на печатной плате размерами 60x65 мм (рис. 4) из двустороннего фольгированного стеклотекстолита, а на рис. 5 показано расположение на ней деталей (всё для варианта приёмника с делителем на четыре). Практически все резисторы и конденсаторы типоразмера 0805.

Для программирования контроллера удобно использовать программатор USBasp. Он относительно недорог и удобен тем, что используется USB подключение к компьютеру. Информации по этим программаторам и программам для него в Интернете множество. К панорамной приставке программатор подключают стандартным (идущим в комплекте с большинством продаваемых программаторов) ISP-кабелем для программирования.

Конфигурацию микроконтроллера задают в соответствии с рис. 6 в окне программы, обслуживающей программатор, т. е. программируют только разряды конфигурации, необходимые для работы с внутренним генератором 8 МГц (CKSEL=0100 и SUT=10). Также нужно установить разряды EESAVE=0, BODEN=0, BODLEVEL=1 (2,7 В).

Управление синтезатором предельно простое. После записи программы, по умолчанию, устанавливается частота генерации 35,32 МГц, что в случае применения делителя на четыре даёт частоту 8,83 МГц, соответствующую частоте ПЧ трансивера TS-940S.

Частоту генерации можно изменять в широких пределах кнопками "FR-" (SB3) и "FR+" (SB4). Скорость перестройки увеличивают, нажав и удерживая кнопку "FAST" (SB2). Установив нужную частоту, следует нажать на кнопку "SAVE" (SB1), и новое значение запишется в энергонезависимую память микроконтроллера - EEPROM. Эта частота будет устанавливаться при каждом включении панорамной приставки. Частоту генерации синтезатора можно контролировать измерительными приборами или прослушивать на трансивере или другом приёмнике.

Разъём Х3 "MUTЕ" может быть полезен для блокировки SDR-приёма в момент передачи, для чего следует замкнуть контакты этого разъёма. Микросхема DA1 - детектор понижения напряжения (супервизор). При его отсутствии бывали случаи потери данных в энергонезависимой памяти в других конструкциях.

Приёмник практически не нуждается в настройке и при правильном монтаже начинает работать сразу.

На фотографии рис. 7 представлен вид готовой панорамной приставки. Она несколько отличается от предлагаемых вариантов, так как на ней отрабатывались и ис-пытывались оба варианта - с делителем на четыре и RC-фа-зовращателем. Малые габариты во многих случаях позволяют разместить эту приставку непосредственно внутри трансивера, а уже с трансивера выводить готовый I/Q сигнал для подключения к линейному входу звуковой карты компьютера. Ну а далее на компьютере нужно установить программу POWERSDR IF STAGE и внимательно изучить всю информацию на сайте WU2X .

В заключение хотелось бы отметить некоторые преимущества использования панорамной приставки перед применением отдельного SDR-приём-ника. Это и относительная простота, и дешевизна самой приставки, и простота подключения к трансиверу. Если нет необходимости управления трансивером со стороны SDR-программы, т. е. вас устраивает управление и перестройка частоты трансивером, то можно применять для просмотра панорамы и SDR-приёма практически любую SDR-программу (нет необходимости в синхронизации частот отдельного приёмника и трансивера). Недостаток - нужен выход ПЧ в трансивере.

В настоящее время панорамная приставка эксплуатируется с трансивером Kenwood TS-940S.

Программу микроконтроллера и чертежи второго варианта печатной платы приёмника можно скачать .

Литература

1. Hunter - SDR Receiver/Panadapter. - http://www.radio-kits.co.uk/hunter/.

2. QRP2000 USB-Controlled Synthesizer. - http://www.sdr-kits.net/QRP2000_ Description.html.

3. SDR-SOFTWARE DEFINE RADIO - программа определяет функции радио. - http://www.rv3apm.com/rxdx.html.

4. Как использовать SDR-панораму с любым трансивером-приёмником. - http://www.rv3apm.com/sdrtrx.html.

5. POWERSDR/IF STAGE. - http://www. wu2x.com/sdr.html.

6. Five Dash Inc/Your Source for SoftRock. - http://fivedash.com/.

7. Amateur Radio Site Devoted to Homebrew, QRP and Low Power Contesting. - http://yu1lm.qrpradio.com/.

8. RFSim99 на русском. - http://dl2kq.de/soft/6-1.


Дата публикации: 15.07.2013

Мнения читателей
  • Vlad / 02.04.2015 - 20:16
    Спасибо автору за информацию. Очень долго пытаюсь найти и купить данный аппарат, может подскажете? С уважением Владимир [email protected]
  • тот же радиомеханик / 08.07.2014 - 18:36
    добавить должен. ну практически не видел удачно работающих и как положено по рассуждениям " на бумаге". у меня и приятелей, которых давно знаю, почему- то хорошо работали приемники с одной ПЧ - пусть и необычно по понятиям многих- высокой. всегда находится какая то "гадость" и пролезает по куче дополнительных каналов приема.
  • радиомеханик / 08.07.2014 - 18:25
    не надо забывать, что "сложнилка" не обязательно станет работать лучьше! и учитывайте возможные самые не идеальные условия приема на практическом месте приема!!! гениальность в простоте схемного решения тщательности и продуманности изготовления.
  • Лена / 13.05.2014 - 10:29
    ...og heren. То совсем не то, что многие подумали! радиолюбительское творчество я очень уважаю. радиолюбитель не подсунул-бы мне явно дохлый аккомулятор. всем вам здоровья и успехах.
  • Лена / 13.05.2014 - 10:19
    пардон. уважаемые damen og heren.воспользовалась деда последней(надеюсь) жены ноут-буком. пока он пошел(три магазинчика в радиусе разлета осколков соответствующего ситуации снарядов \"среднего\" танка. покупать аккомулятор или что-то для моего. согласна с тем, что видела им натыканого в... (пустоту,надеюсь я дура не права).
  • Сергей / 10.05.2014 - 06:53
    Говоря прямо - маразм крепчает.Или автору нечем заняться на чужбине и в жаре.На мой взгляд это уже достояние не радиоэлектроники, а отрасли медицины - психиатрия. Думаю (к сожалению), я не ошибся.Не говоря о анализе текста уважаемого автора. Что поделать - ностальгия его мучит вероятно...

Технология SDR в общих чертах

Введение

Развитие технологий происходит всё время, и с каждым годом компьютер всё больше и больше входит в наш обиход. Применение компьютера в радиолюбительской практике на протяжении последних 15 лет ограничивалось ведением аппаратного журнала, управлением трансивера по RIG-интерфейсу да обработкой сигнала в цифровых видах связи. Со стремительным увеличением вычислительных мощностей и миниатюризацией интегральных схем, стало возможно встраивать микрокомпьютеры, в классические трансивера. Сначала обрабатывали детектированный НЧ сигнал, потом стали оцифровывать сигнал уже на низкой ПЧ – 12..48кГц, и уже программно кодировать \ декодировать любые виды модуляции. На этом до недавнего времени и остановилось развитие всех трансиверов. Где то начало 2000-х годов. За последние 10 лет основные киты трансиверостроения, дальше этой планки не прыгнули. Осталась всё та же технология основной фильтрации и обработки сигнала на промежуточной частоте. Весь упор делается на расширении сервиса управления и отображения. Красивые цветные экраны и множество кнопочек, заменяющие ручки, современная элементная база… Вроде бы всё это круто! Но принципы обработки сигнала остались всё те же, что и 80 лет назад, когда появилась сама идея принципа обработки сигнала на промежуточной частоте. Остались всё те же проблемы с побочными каналами приёма, нелинейность множества каскадов обработки сигнала, проблемы качественной фильтрации и задачи правильного баланса усиления по каскадам и связанными с этим шумами. На протяжении десятилетий разные фирмы стараются решить эти задачи теми или иными способами наращивая сложность и стоимость этой чудо-коробочки, что стоит у каждого радиолюбителя на столе.

Новое веяние

И вот, в где то в 2004…2006 году, на рынке появилась фирма Flex-radio, которая подошла к вопросу конструирования с новой… хотя, с какой новой? Со старой, давно забытой стороны. Flex-ы применили принцип прямого преобразования сигналов. В этом принципе, спектр сигнал с радио частоты переносится сразу в низкочастотную область спектра и тут же обрабатывается. В нашей стране, этот принцип в начале 80-х годов применил и начал широкопопуляризировать ВладимирТимофеевич Поляков,RA3AAE. С его простых схем, многие юные начинающие радиолюбители начинали свой путь в радио, в том числе и Я. Но тогда этот принцип не получил широкого распространения. Связано это было с тем, что требовалось мотать множество катушек и точно настраивать каскады фильтрации, что бы получить высокие характеристики трансивера. Было много и других технологически сложных моментов.
С широким распространением компьютера, стало возможным оцифровать нужную полосу спектра и уже в программе фильтровать и обрабатывать сигналы, что избавило от необходимости мотать множество катушек. Основной особенностью принципа прямого преобразования, является наличие 2-х каналов обработки сигнала, сдвинутых друг относительно друга на 90 градусов. Т.н. метод квадратурной обработки сигналов. Получается, технология прямого преобразования подразумевает 2 приёмника прямого преобразования в одном корпусе – они и составляют основу всего метода. Flex Radio же, пошел дальше. В одной программе они реализовали не только обработку сигналов, но и управление трансивером. Технологически, это позволило избавиться от множества каскадов классического трансивера, и свести к минимуму количество узлов обработки сигнала. В железе остались всего несколько узлов. Синтезатор частоты, управляемый от компьютера, смеситель приёма и передачи, малошумящий широкополосный УНЧ, узлы коммутации приёма\передачи и ещё усилитель передатчика. Так появился на свет первый трансивер FlexSDR-1000.
SDR (SoftwareDefineRadio) – программно определяемое радио, буквально. Всё хорошо! Непревзойденно качественный звук, высокие динамические характеристики трансивера далеко отбросили назад классику.Но были и трудности. Те, кто начинал освоение технологии SDR 5-7 лет назад, помнят, сколько стоило сил подобрать нужную звуковую карту для компьютера, настроить программное обеспечение. Звуковая карта Delta-44 стала легендой!
И сегодня, если раньше в качестве оцифровки сигнала мы были ограничены качеством звуковой карты, то теперь этой проблемы не существует. За последние 5 лет произошел очередной прорыв в области миниатюризации и интеграции микросхем, стало возможным вынести весь низкочастотный тракт обратно в корпус трансивера. Фирма Flex radio, применила самые передовые и лучшие микросхемы АЦП. Встроив их в трансивер, Flex-ы избавили нас от необходимости искать «правильную» звуковую карту и освободили стол от множества проводов. Теперь стало возможным управлять трансивером по одному FireWare - кабелю. Так появились на рынке флагманский трансивер Flex SDR-5000 и его младший аналог – Flex SDR-3000. Выбор в качестве управляющего, столь экзотического интерфейса - IEEE-1394a (FireWare),был вызван необходимостью пропустить по одному шнуру максимально широкий цифровой поток, который позволяет обработать применяемые АЦП и ЦАП. Flex SDR-5000 и Flex SDR-3000 на сегодня являются передовыми трансиверами по качеству обработки сигнала, оцифровываемой полосе сигнала и имеют максимально возможные динамические характеристики. Один недостаток у них – трансиверы получились дюже дорогие. Тогда фирма Flex-radio решила выпустить бюджетный вариант трансивера Flex-1500. Он появился совсем недавно – в 2010 году. Его параметры немного поскромнее, чем старшие аналоги. Но скромность касается только ширины полосы обработки сигнала и применяемым интерфейсом. Теперь это USB 2.0! Ну и мощность трансивера сделали поменьше. Получился очень удобный QRP-аппарат. С моей точки зрения – самый оптимальный!

Понимаем… сравниваем.

Рассматривая характеристики классических настольных аппаратов, обычно уделяют внимание следующим характеристикам: динамика – способность принимать сигнал на данной частоте, когда рядом в стороне на другой частоте включается другая мощная станция; избирательность по соседнему каналу – параметр характеризующий, способность приёмника выделить нужный сигнал на данной частоте в заданной полосе; чувствительность – способность принимать слабые сигнал. Это основные характеристики которые могут интересовать среднестатистического радиолюбителя. Обычные люди мало знакомы с кучей определений и величиной циферок – это уже удел профессионалов, потому все остальные характеристики я опущу, а обсуждаемые постараюсь описать в понятной форме.

Сидит, скажем, радиолюбитель Вася…. Нет, не Вася, пускай это будет Петя. Сидит, скажем, радиолюбитель Петя вечером после работы дома и общается на 80-ке с Васей. Обсуждают они конструкцию новой антенны «Базука» или «мурыжат» какой-нибудь несчастный диполь или треугольник. (Ну много есть начинающих в эфире …) И тут включается где-нибудь рядышком по частоте Витя, сосед Пети. Он включился, допустим, в стороне на килогерц так 50. У Пети хороший новый трансивер, и нет еще усилителя. Но вот беда – Петя живёт в соседнем доме от Виктора. У Пети недорогой, бюджетный трансивер с достаточно скромными параметрами. И вот, в моменты, когда Витя будет давать общий вызов, Петя будет переставать принимать Васю. Почертыхавшись минут пять-десять, Петя вынужден попрощаться с Васей, выключит трансивер и пойдет пить чай или общаться с женою о ценах на картошку, в мыслях проклиная Витю, свой трансивер и еще кого-нибудь за компанию.

Достаточно известная история, правда? Так вот, параметр, который показывает, насколько у Пети притухнет стрелка, когда включится Виктор – и есть динамический диапазон приёмника. Этот параметр зависит в комплексе от того, как спроектирован трансивер, какие у него узлы по качеству и как они сбалансированы по характеристикам.
Если сравнивать цифры – то для обывателя, наверное, ближе будет сказать так. Вот когда Витя включается на один трансивер – то Петя не чувствует его присутствия на диапазоне. А как только Витя включит свой Аком-1000 – то Пете можно снова идти пить чай. Это значит трансивер у Пети хороший. И да же если бы у Виктора стоял не Аком, а какой-нибудь самодельный усилитель, типа на 4х ГУ-50 или на паре ГУ-29, и Петя продолжал бы слышать Васю и пускай с несколько притухшим уровнем, то можно сказать, что у Пети трансивер очень хорош по динамике!

Рассматривая трансивер Flex SDR по параметру динамика, могу сказать, что я уверенно принимаю всех корреспондентов при том, что вокруг меня в радиусе 1 км проживает около 8 активных радиолюбителей с мощностями от 100 до 500Вт, и находиться около 3-х баз такси на 27МГц, с такими же мощностями. Это соответствует динамике цифрой примерно 90дБ. Для сравнения, имея такой известный трансивер как Kenwood TS-870s, я все же пары людей имел дискомфорт, когда они включались с усилителями. На Flex SDR, я вижу их включения на экране, но это никак не мешает мне слышать своего корреспондента.
Если рассматривать схемотехнику, то в СДР динамика зависит, прежде всего, от аналого-цифрового преобразователя. Общая динамика аппарата, легко высчитывается из разрядности АЦП. Для 16-битной АЦП – это 96 дБ. Реально около 90 дБ. Для 24-битного АЦП – 144 дБ, реально – 130-136 дБ. От смесителя СДР – эта цифра практически не зависит, т.к. он выполнен на практически «идеальных» аналоговых пере множителях, выполненном на основе цифровой микросхемы. Динамика «цифрового» смесителя, переваливает за цифру 150 дБ и прежде чем смеситель выйдет из линейного режима – перегрузятся все другие каскады.

Избирательность – так же один из важных параметров, который мы воспринимаем непосредственно своими ушами.
Допустим Петя всё же разжился хорошим трансивером среднего класса, Виктор больше его не донимает, да и Аком свой он продал почему то. Теперь Петя может спокойно по вечерам тарахтеть с Васей об антенне «Базука», всячески расхваливая её, и хвастаясь как его трансивер волшебным образом, стал меньше шуметь и теперь Петя может принимать горячо любимых «нулевиков», правда они его до сих пор не могут услышать. И всё же временами Пети приходится понервничать, т.к. Константин, живущий в соседнем районе, временами пристраивается всего в паре килогерц и начинает «цикулять» дальних. Нет отстроиться подальше и «алёкать», да ведь не прогонишь этого… Приходится Пете на трансивере вертеть ручки DSP фильтров, изощряться всячески, да бы этот любитель DX-ов не мешал вести беседы с Васей на около-научные темы и в итоге – покидать тепло-насиженную частоту.

В трансивере с классической схемотехникой супергетеродинного типа, избирательность определяется качеством Фильтра Основной Селекции (ФОС). И даже в самом современном, полу цифровом трансивере типа ICOM серии Pro, 7хххили Yaesu FT-ХХХХ не поможет никакая цифровая обработка сигнала, если мощная помеха пролезет в полосу ФОС. Зачастую это одна из самых дорогих опций для трансивера. И для того что бы трансивер на столе начал достойно звучать – нужно прилично разориться на несколько качественных фильтров. В СДР-трансивере Flex-1500 и старших моделях SDR-3000 и SDR-5000 все эти недостатки отсутствуют изначально! Программно можно настроить фильтр ЛЮБОЙ полосы! Можно настроить не только полосу, но и характеристики скатов фильтра. И даже такие можно сконфигурировать фильтры, – которые в железе реализовать в принципе нельзя. Т.е. как таковое понятие ФОС в СДР уже теряется. В СДР фильтруется сигнал сразу, практически из эфира и с очень высокими характеристиками. Всё это позволяет очень эффективно отстраиваться от мешающих соседей, т.н. «свистулек» - тональных помех. Применяя современные сложнейшие математические алгоритмы DSP, стало возможно очищать от шума исходные принимаемые сигналы. И если вдруг кто то пристроиться буквально в 2х килогерцах рядом и начнет разговор, то он уже не будет так мешать как раньше. В старом трансивере единственным выходом из такой ситуации было отстроиться в сторону или качнуть свой сигнал до такой степени, что бы выгнать всех в полосе 5-7кГц по сторонам. В СДР-трансивере теперь можно просто подвинуть скат фильтра на 500-700Гц и надоедливого соседа больше не слышно. Мы его видим на экране, но нам он уже не мешает общаться.

Чувствительность – способность приемника различать самые слабые сигналы принимаемые антенной. Этот параметр определяется собственными шумами приёмника. В классическом трансивере, это опять же комплексная характеристика, зависящая от правильности проектирования. Кроме того, на чувствительность завязана, получается, еще и динамика и избирательность.

Наконец Петя разжился вертикальной антенной GAP-titan и теперь связи с «нулевыми районами» у него выходят чуть ли не каждый день. Мало того, Петруха теперь может докричаться не только до «нулевиков», но и до самих Штатов. Европу он более-менее обрабатывает понемногу. Они тут относительно рядом все. Всего то каких-нибудь 2000-4000 км. Да и валят с такой силой сигналов, что и коллегу с ближнего региона запросто перебивают. Но вот незадача теперь, по вечерам трепаться с Васей стало не интересно. Более стали захватывать душу вечерние, ночные и утренние прохождения. Петя сидит в эфире каждый вечер и ночь, пытаясь выловить острова тихого океана, Австралию… Однажды на уровне шумов Петя услышал острова Полинезии, а однажды едва различимые сигналы с тихого океана. Эххх… думал Петя, жить бы где-нибудь в деревне… Чувствительности трансивера хватает услышать всех, но вот помехи. Чтобы их так! Или антенну направленную поставить на крышу. Тогда любой бы DXбыл в кармане.

В супергетеродинном трансивере чувствительность определяется сбалансированным усилением по всем трактам, начиная от антенного входа и заканчивая УНЧ. В СДР-приёмнике такого жесткого подхода к балансу усиления нет. Смеситель, благодаря тому, что используется двойная балансная схема, вносит минимум потерь. Так же благодаря тому, что в качестве элементов смесителя используются аналоговые высокоскоростные ключи – такой смеситель практически не шумит. Всё усиление происходит на низкой частоте и обеспечивается новейшими специализированными сверх малошумящими широкополосными микросхемами. Для того что бы сохранить высоким параметр динамики АЦП, усиление МШУ УНЧ выбрано минимальным и фактически оно компенсирует потери в смесителе и входных цепях. После АЦП цифровой поток отправляется в программу, где и осуществляется основное усиление и обработка сигнала уже программным методом.

На ВЧ-диапазонах начиная от 10МГц и выше, есть смысл реализовать дополнительное усиление, т.е. обеспечить повышенную чувствительность. Благодаря относительно малому уровню атмосферных помех, меньшей плотности сигналов и меньшему их уровню на частотах выше 10МГц можно увеличивать чувствительность трансивера предусилителями не боясь перегрузить каскады усиления и ФОС. В известных трансиверах ICOM, 756 серии Pro Х, предварительных усилителей ставят даже по 2 штуки. В трансиверах Flex SDR, стоит один высоко динамичный предварительный усилитель с нормированным усилением 20дБ. Дополнительное усиление осуществляется регулировкой МШУ по НЧ. Даже без предусилителя чувствительность трансиверов Flex SDR, составляет -116дБм – это соответствует 0.35мкВ. С включенным предусилителем в среднем положении чувствительность улучшается до значения -127дБм или 0.099мкВ, с максимальным усилением чувствительность составляет уже -139дБм или 0.025мкВ и ограничена уже шумами самого предусилителя. Если сравнивать по чувствительности классический трансивер с SDR трансивером, то тут SDR выигрывает сразу не только по чувствительности, но и по такому параметру как «ШУМНОСТЬ». Этот параметр совсем не очевиден на первый взгляд и не фигурирует ни в одном рейтинге. Но, зачастую он является самым главным из субъективных оценок качества работы трансивера. В случае если человек достаточно долгое время проводит в эфире, да ещё и в наушниках – то фактор шумности становится просто одним из главных. Это разница проявляется, когда снимаешь наушники и голова «гудит» от шума или снимаешь наушники «полностью отдохнувшим от мирских забот». Согласитесь – цель нашего хобби – это отвлечься от мира и отдохнуть душою! В параметре «шумность» SDR-трансивер оставил далеко позади классику, включая навороченные ICOM IC-7x00 и Yaesu FT-X000. Как пример, сейчас, когда я пишу эту статью, у меня на столе одновременно стоит включенный Yaesu FT-897D и Flex-1500. Я их по очереди слушаю и замечаю, что Yaesu FT-897D имеет характерный шум даже в отсутствии сигнала (это не шумы QRN\QRM) и я от него не могу ни чем избавиться. Это так спроектирован трансивер. Переключая звук на Flex-1500,я могу так настроить звук, что даже в условиях сильных индустриальных помех (а они у меня до 9+20дБ доходят) я могу вытянуть слабый сигнал буквально над уровнем шума, очистить его, и комфортно прослушать. Т.е. качественно повышаем параметр сигнал\шум. Ни один обычный трансивер так не умеет!

Тут я могу ещё привести пример моего старшего товарища, Николая Николаевича, R7CC (Ex. RZ6BA), Коля - любитель вылавливать DX-станции. Долгое время он пользовался одними из лучших классических трансиверов: Kenwood TS-870s и Kenwood TS-950dsp. Когда Коля приобрел на пробу SDR-трансивер, он не стал продавать сразу Кенвуда. Почти год он в разных условиях, при разных прохождениях и антеннах придирчиво сравнивал их и СДР. И через год он продал с радостью всё лишнее железо в лице 2-х больших тяжелых коробок фирмы Кенвуд.

Что бы был понятен порядок шумных цифр, приведу примеры.
Уровень шума в деревне вдали от города на 14МГц – 0.01…0.1мкВ
Шум в пригороде мегаполиса на 14МГц – 0.1…3мкВ
Шум в городе варьируется в очень широких пределах – от 10 мкВ до 1 мВ и сильно зависит от плотности населения, наличия проводного интернета, компьютерных сетей, а так же положения звёзд в каждой конкретной квартире.
Что бы стало еще понятнее – можно представить, что:
Когда вы слышите какие-нибудь острова на грани чувствительности – это антенна ловит сигналы уровнем 0.5-5 мкВ (1…3 балла S-метра);
«Нулевики» из-за Урала идут с уровнями 10-50 мкВ (5...9 баллов S-метра);
Соседний регион 500-1500 км – 50-500 мкВ (9…9+40дБ баллов);
Сосед по району – 1-100 мВ (стрелка S-метра полностью ложится вправо);
Контестовая позиция неподалёку или сосед-радиолюбитель в вашем же доме – запросто могут навести до нескольких вольт на вашу антенну.
В последнем варианте уже не спасёт ни аттенюатор, ни сверх дорогой трансивер, а вот бутылочка горячего с огурчиком в пятницу вечером или после соревнований легко поможет сгладить испорченные выходные и\или наладить крепкую дружбу до конца жизни.

Исходя из вышенаписанного видно, что СДР-трансивер реально превосходит обычную классику по качеству приёма. Взяв Flex SDR-1500 с собою с ноутбуком на дачу или в поле, мы обеспечиваем себе более комфортный приём, нежели тот же Yaesu FT-817. Flex SDR-1500 мал, лёгок, и экономичен. Не шибко дорогой вариант – Flex SDR-3000 вполне подойдет среднему радиолюбителя без «закидонов». И DX-а отловить, и комфортно за круглым столом в выходные посидеть и автоматический тюнер есть. Ну а если вы любитель соревнований, то тут уже есть смысл разориться на Flex SDR-5000. Тут и 2 приёмника, причём, не такие убогие как в Yaesu FT-x000, а полностью идентичные и конфигурируемые на разные антенные входы, и высококлассные УКВ и ДЦВ режимы. Тут уже вообще ни один трансивер не идёт в сравнение!!! Аналогов просто не существует!

Как говориться «В бочке мёда…», соблюдаем гармонию.

В предыдущей главе я постарался доступным языком описать главные характеристики трансиверовFlexSDRи сравнить его с качеством работы классических трансиверов.
Для сравнения чувствительности в чистых цифрах откроем последнюю таблицу характеристик известных трансиверов опубликованную в американском журнале для радиолюбителей QST. Взято :

Чувствительность и динамический диапазон по блокированию...

Вопросы, касающиеся динамического диапазона по блокированию, предлагаю вниманию выборку из обзора параметров современных DSP трансиверов. (По материалам измерений лаборатории ARRL при журнале QST.) Условия измерений: УВЧ трансивера выключен, установлен и включен CW фильтр 500 Hz (опция или DSP), Р азнос полезного и мешающего сигналов - 20 kH

Диапазон 80 метров

Модель

Чувствительность (dBm)

Блокинг.(db)

Журнал QST

Экстра-параметр (> 130db)

FTdx5000 (c УВЧ!)

IC-7800* (с УВЧ!)

TS-590S

05.2011New!!!

FT-1000MP

IC-775dsp

FT-2000

Высокий-параметр (125-130db)

FT-1000мkV

FT-DX9000Cont

FT-950*(с УВЧ1)

TS-870S

TS-2000

Средний-параметр (120-125db)

IC-7700

IC-746pro

IC-756pro3

FT-1000mkV Field

IC-7600

Низкий-параметр (< 120db)

IC-756pro2

TS-570D

IC-7000

Диапазон 20 метров

Экстра-параметр (> 130db)

FTdx5000(с УВЧ!)

IC-7800* (с УВЧ!)

FT-1000MP

Не просто очередная беглая статья о модификации тюнера, а подробный мануал о том, как это делается, как работает, с описанием не только готовой конструкции, но и подводных камней, а так же просто интересных сопутствующих фактов.

Немного истории

Выход в свет микросхемы RTL2832U для приемников цифрового телевидения в формате DVB-T не обещал никаких сенсаций, ведь фирма Realtek и так несколько запоздала с ее выпуском. В 2010 году уже начинал внедряться более прогрессивный стандарт DVB-T2 с более эффективным кодированием информации, поэтому первоначально новинка не привлекла особого внимания. В течение двух лет дешевые USB-тюнеры на ее базе использовались по своему прямому назначению, пока в начале 2012-го года не произошла утечка некоторой технической информации о режимах работы данного чипа. Выяснилось, что для приема аналогового (FM) и цифрового (DAB) радио в диапазоне УКВ, эта микросхема использует принцип программного декодирования предварительно оцифрованной из эфира полосы частот. Т.е. она, грубо говоря, оцифровывает высокочастотный сигнал из антенного входа, а фильтрация конкретной несущей и ее детектирование (выделение полезной информации) из полученного цифрового потока отдается на откуп центральному процессору. Очевидно, что сделано это было из соображений экономии, точно так же, как во времена заката Dial-UP массовое распространение получили экстремально дешевые «софт-модемы», которые тоже представляли собой лишь продвинутую пару ЦАП+АЦП, а весь сигнальный процессинг выполнялся CPU в потоке с наивысшим приоритетом.
Высокий приоритет потока обработки сигнала с полосой частот чуть более 3 кГц приводил к заметному замедлению работы ПК того времени. Сегодняшние системы ведут себя сопоставимым образом, обрабатывая в 1000 раз больше информации.

Именно эта тяга к экономии и предопределила дальнейшую судьбу большинства тюнеров, собранных на основе RTL2832U. Утечка информации о возможностях чипа произвела эффект разорвавшейся бомбы. Еще бы, ведь все радиолюбители мира в одночасье получили мощнейшее средство радио-мониторинга. Приемник, покрывающий диапазон от Low-Band до отдаленного УКВ, не ограниченный ни типом модуляции, ни остротой настройки, с возможностью панорамного просмотра полосы более 3 МГц, и все это за 10 долларов! Ну и пусть, что работа возможна только в паре с компьютером, зато дешево и на вид практически неотличимо от простой флешки. Для сравнения, классический сканирующий приемник с поддержкой такого диапазона частот и типов модуляции (но без панорамного обзора) стоит порядка пятисот долларов и выглядит крайне подозрительно в руках обычного человека.

Рассматриваемый в данной статье приемник на базе RTL2832U является классическим SDR, поэтому и получил в народе название RTL-SDR. Даже китайские интернет-магазины часто продают эти тюнера именно под таким названием, совсем забывая упомянуть, что вообще-то это устройство задумывалось как телевизионный тюнер, а не игрушка для радиолюбителей.

Software Defined Radio – устройство приема и/или передачи радиосигналов, построенное на базе цифровой обработки сигналов процессором компьютера. От классического «аналогового» принципа отличается именно тем, что сигнал на как можно более ранних стадиях (в случае приемника) преобразуется в цифровой вид и в дальнейшем обрабатывается процессором. Это позволяет избавиться от массы аналоговых элементов схемы, часто дорогих и/или требующих тонкой настройки. В случае SDR-передатчика, сигнал до последнего существует в цифровом виде и проходит ЦАП в самом конце своего формирования. Кроме аналогового радио и SDR, существует еще большой класс DSP-радио, которое во многом аналогично SDR, но за цифровую обработку отвечает не просто программа, а специализированный DSP-чип (Digital Signal Processor). Такой цифровой сигнальный процессор реализует все или часть алгоритмов обработки сигналов на уровне логики, а не программного кода, что делает его более экономичным и эффективным, хоть и менее гибким, по сравнению с SDR. На практике часто бывает сложно провести четкую грань между SDR и DSP.

Примечательной особенностью практически любого SDR является его всеядность, ведь даже довольно сложные в «железной» реализации методы кодирования (например, однополосная амплитудная модуляция – SSB) легко обрабатываются программно и на практике для такого приемника вообще нет разницы, что принимать. В качестве демонстрации этой особенности, можно упомянуть курьезную разработку, которая позволяет принимать на такой тюнер аналоговое телевидение. Да-да, эти извращенцы заставили TV-тюнер принимать TV-сигнал! Но необычное тут то, что тюнер, вроде как, только для DVB-T, а сигнал таки аналоговый.
К сожалению, приемник аналогового телесигнала получается не очень полноценным, и поделать с этим ничего нельзя. Проблема в том, что сигнал изображения в системах PAL или SECAM с разложением на 625 строк занимает в эфире полосу до 6.5 МГц, в то время как RTL2832U в SDR-режиме умеет в один момент оцифровывать максимум 3.2 МГц. В итоге из-за ограничений доступной полосы частот, изображение принимается со значительно уменьшенной горизонтальной детализацией, а звуковое сопровождение (для передачи которого используется отдельная несущая в стороне от сигнала изображения) не принимается вовсе.

Также при помощи этого тюнера можно принимать и декодировать сигналы GPS, переговоры абонентов сотовых сетей (когда выключено шифрование), или, скажем, «читать» пейджинговые сообщения (там, где таковые все еще в ходу). Для всего этого существует либо самостоятельно ПО, либо плагины к универсальным «комбайнам» вроде SDRSharp.

Так что с короткими волнами?

Короче, очень удачная игрушка получилась, но не бывает так, чтобы все сразу было хорошо. Мониторинг местного УКВ-эфира – это, безусловно, очень интересно, но было бы гораздо интереснее, если бы была возможность приема и на более низких частотах. Ведь только на частотах менее 30 МГц можно непосредственно услышать сигналы передатчика, расположенного на другом краю планеты. Тем более что продвинутые возможности детектирования разных видов модуляции оказываются практически невостребованными в диапазоне ультракоротких волн. Служебная аналоговая связь, как правило, ведется с использованием узкополосной частотной (NFM), а в авиа-диапазоне в ходу обычная амплитудная модуляция. Самый энерго-эффективный и сложный в реализации метод модуляции с одной боковой полосой (SSB) на УКВ практически не используется, а вот на коротких волнах без него можно разве что Радио Китая послушать.

Проблема приема коротких волн на RTL-SDR имеет несколько решений. Первое – это подача сигнала с антенны непосредственно на вход микросхемы RTL2832U, минуя радиочастотный модуль (представленный обычно чипом R820T или R820T2). Называется это прямой оцифровкой (Direct Sampling, он же Q-branch или I-branch), и именно такой метод используется в дешевых наборах типа «сделай сам», массово представленных в китайских интернет-магазинах.


В такие наборы входит корпус, TV-тюнер, печатная плата, горсть дискретных деталей, и очень странная антенна. Тюнер предполагается разобрать, отпаять от его платы USB и антенный разъемы, и впаять то, что осталось в соответствующий фигурный вырез большей печатной платы. Туда же устанавливаются дискретные элементы, все это закручивается в корпус и на выходе получается симпатичная коробочка размером не больше пачки сигарет, теоретически способная принимать сигналы в диапазоне от нуля до многих сотен мегагерц.

На практике метод прямой оцифровки хоть и отличается крайней простотой реализации, но имеет слишком много недостатков. Самый главный из них – фактическая оцифровка сигнала только в диапазоне до 14400 кГц. Принимать он может и более высокие частоты, однако это уже побочный канал приема, который мешает основному и которому мешает основной. Второй критический недостаток – довольно низкая чувствительность полученного таким образом коротковолнового приемника. Вход RTL2832U не предназначен для обработки слабых сигналов, которые приходят с антенны. Реальная чувствительность получается хуже нескольких десятков микровольт, чего явно недостаточно для приема дальних SSB-станций, особенно на неэффективную короткую антенну.

Антенны – отдельная очень большая тема, на которую написаны тысячи серьезных работ. В обывательских кругах бытует мнение, что чем длиннее антенна – тем лучше она работает, однако в большинстве случаев это совсем не так. Наилучший результат дает антенна, настроенная в резонанс. А простейший путь добиться резонанса – это выбрать правильный размер. Эффективная проволочная антенна должна иметь длину, примерно равную четверти длины волны принимаемой станции. Например, принимать сигнал на частотах в районе 3.5 МГц (длина волны около 85 метров) лучше всего будет 21-метровый провод. До сантиметров отмерять не стоит, потому что кривая резонанса все равно довольно пологая. Очень пагубно на качество антенны влияет любой параллельный ей электропроводящий предмет, в том числе земля. Поэтому провод должен быть вертикальным или наклонным и не располагаться под острыми углами к близким металлическим или бетонным конструкциям. При невозможности сооружения полноразмерной антенны, допускается свернуть провод в трех-пятиметровую спираль (но его реальная длина все равно примерно должна соответствовать четверти длины волны). Так же не забываем, что в случае использования четвертьволновой антенны, внешний контакт антенного входа приемника обязательно должен быть заземлен или подключен к проволочному противовесу той же длины.

Малую эффективность антенны можно скомпенсировать повышением чувствительности приемника. К примеру, связные коротковолновые приемники обычно имеют чувствительность 0.25 микровольта и лучше, так что многие десятки микровольт «голого» RTL2832U сгодятся разве что для приема мощных радиовещательных станций.
Кстати, антенна из комплекта предназначена для сотового модема, о чем на ней прямо написано. На коротких волнах она работает почти никак, а что заставило китайского производителя вообще положить ее в набор – великая тайна.

Кроме низкой чувствительности и проблем с рабочим диапазоном, схема прямой оцифровки неудобна сложностью подключения дополнительных проводов к выводам микросхемы. Сделать это реально только игольчатым жалом и под сильным увеличением. Твердая рука также жизненно необходима, поэтому очень многие именно на данном этапе запороли тюнер и отправили остаток набора в долгий ящик.

И хотя даже этим недостатки не ограничиваются, думаю, сказанного уже достаточно для понимания того, что собирать его в соответствии с задумкой производителя не стоит. Гораздо лучше использовать набор в качестве основы для более достойного устройства аналогичного назначения.

Преобразование частоты

Второй способ научить RTL-SDR принимать КВ заключается в переносе спектра 0-30 МГц в любой другой участок, с которым тюнер умеет работать без всяких модификаций.

Подобный перенос называется преобразованием частоты вверх (Up-converting) и производится при помощи вспомогательного генератора переменного тока и схемы, называемой смесителем. Суть работы смесителя заключается в следующем: при подаче на его входы двух сигналов с разными частотами, на выходе формируется третий сигнал, частота которого равна сумме или разнице входных. При этом выходной сигнал повторяет в себе все амплитудные и частотные колебания входных. Таким образом, если на один вход подать принятый антенной сигнал в диапазоне 0-30 МГц, а на другой – не модулированный переменный ток от вспомогательного генератора (гетеродина) с частотой, скажем, 100 МГц, то на выходе мы получим полную копию сигнала с первого входа, сдвинутую на 100 МГц вверх.

В большинстве подобных преобразователей предлагается использование микросхемы SA602, которая отлично зарекомендовала себя в связной аппаратуре практически всех диапазонов волн. Она довольно распространенная, требует минимум «обвязки», а ее возможности с лихвой покрывают наши потребности.

Совершенно аналогичный чип может скрываться и в корпусе с маркировкой NE602. Так же существуют более дешевые микросхемы SA612 и NE612, которые немного отличаются по характеристикам, но тоже вполне пригодны для преобразователя частот. Цоколевка и рабочие напряжения всех четырех микросхем совпадают, поэтому они полностью взаимозаменяемы.

Единственное теоретически заметное в данном случае отличие микросхем SA612/NE612 от SA602/NE602 – это их меньший коэффициент усиления, 14 dB против 18. Однако на практике в приведенной ниже схеме мне не удалось обнаружить на слух какую-либо разницу между ними, поэтому смело можно использовать ту, которая первой попадется под руку.

Что еще, кроме гетеродина и смесителя нужно для преобразователя частоты? Последним жизненно необходимым элементом схемы является фильтр низких частот (ФНЧ, он же Low-pass Filter). Его важность проистекает из самого принципа работы преобразователя частоты. Мы помним, что смеситель в преобразователе производит сложение и вычитание частот, поступающих на его входы. И если с частотой гетеродина 100 МГц на второй вход подать сигнал 3.5 МГц, то мы сможем принять его тюнером при настройке на 103.5 МГц. Однако если подать на второй вход сигнал с частотой 203.5 МГц, то смеситель услужливо вычтет из него частоту гетеродина и снова выдаст нам те же 103.5 МГц.

Этим отсечением и занимается фильтр низких частот. Подробно на принципе его действия останавливаться не будем, тем более что он очевиден любому, кто знает, что такое индуктивное и емкостное сопротивление. Для нас главное, что он очень прост в реализации и, не смотря на свою аналогово-высокочастотную сущность, при правильном изготовлении не нуждается в какой-либо настройке. Схема ФНЧ седьмого порядка с частотой среза 30 МГц выглядит так:


Существует некоторая путаница в именовании фильтров нижних и верхних частот в русскоязычной литературе. Одни авторы руководствуются такой логикой: «фильтр должен называться фильтром низких частот, если он отфильтровывает (т.е. подавляет) низкие частоты». Другие же, напротив, думают так: «если фильтр очищает (т.е. наоборот оставляет) низкие частоты, то именно его и нужно называть фильтром низких частот». В результате в разных источниках под ФНЧ (или ФВЧ) подразумеваются совершенно противоположные понятия. Для устранения путаницы предлагаю вспомнить английские термины, которые не допускают двусмысленности. Фильтр, пропускающий низкие (т.е. подавляющий высокие) частоты, называют Low-pass Filter. Обратный ему, соответственно, – High-pass Filter. Все однозначно и никакой путаницы. И если перевести ключевое слово английского и наложить его на русский термин, то получается, что Low -pass Filter – это фильтр низких частот, т.е. ФНЧ. В то же время High -pass Filter – это фильтр высоких частот, ФВЧ.

В принципе, с тремя жизненно необходимыми элементами определились, и если сделать преобразователь частоты по стандартной схеме из datasheet, то он уже будет работать. Однако у такой схемы есть еще один неочевидный недостаток, который значительно ухудшит характеристики устройства.

Согласование сопротивлений

Вход смесителя выбранной микросхемы имеет сопротивление около 1500 Ом, а описанная выше четвертьволновая антенна – всего 50 Ом или меньше. На первый взгляд кажется, что ничего страшного, ведь с «силовой» точки зрения важно, чтобы потребитель (вход микросхемы) имел более высокое внутреннее сопротивление, чем источник (антенна), и в данном случае это условие соблюдено. Вот только с «сигнальной» точки зрения такое соотношение обозначает, что потребитель не берет всю мощность от источника. А там, где потребитель не берет все, что ему предлагается, сигнал всегда проходит с потерями.

Многие начинающие конструкторы вообще не уделяют внимания согласованию сопротивлений именно потому, что руководствуются «силовым» подходом. Ведь сопротивление лампочки на многие порядки выше выходного сопротивления ближайшей трансформаторной подстанции, и ничего, лампочка светится, подстанция не взрывается. Ошибка тут в том, что пред лампочкой не стоит задача «высосать» всю энергию из подстанции, ее функция состоит в том, чтобы взять ровно столько, сколько ей нужно. В то же время в сигнальных цепях любой недобор и перебор приводят к тому, что часть энергии просто не доходит от источника к потребителю и в результате сигнал ослабляется.

Второй точкой схемы, где требуется согласование сопротивлений, является выход смесителя. Тут ситуация даже хуже чем на входе, потому что высокоомный (те же 1.5 кОм) источник нужно подключить к низкоомному потребителю (вход тюнера имеет стандартный «телевизионный» импеданс 75 Ом).

Снова пример из механики. Представим себе электродвигатель с номинальной частотой вращения, скажем, 3000 оборотов в минуту, и лифт. Предположим, что мощность двигателя как раз соответствует мощности, необходимой для поднятия кабины. Однако если мы непосредственно соединим вал такого двигателя и лебедку лифта, ничего хорошего у нас не выйдет. Вал двигателя стремится крутиться слишком быстро, но при этом обеспечивает слишком малый крутящий момент для того, чтобы кабина лифта могла двигаться в нормальном режиме. Да, вероятно такой лифт все-таки сможет работать. С сильнейшим перегрузом двигателя и/или «космической» скоростью движения кабины после разгона. Для того, чтобы наш лифт заработал нормально, двигателю тоже необходим редуктор, который уменьшит частоту вращения и при этом увеличит крутящий момент. А хуже предыдущей эта ситуация потому, что тут не только не оптимально используются энергия источника, но и нарушается режим его работы из-за непомерной нагрузки.

В принципе, здесь тоже самое место трансформатору или, в крайнем случае, согласующему LC-фильтру. Но изготовление трансформатора, как уже говорилось выше, не стоит затраченных усилий, а согласующий фильтр, во-первых, имеет слишком «горбатую» амплитудно-частотную характеристику, а во-вторых, является избыточным с точки зрения самой необходимости что-то фильтровать в данной точке схемы. В общем, я решил использовать активный согласующий каскад. Он хоть и требует некоторой энергии для своей работы, но зато позволяет получить почти идеальное понижение сопротивления в любых разумных пределах.


В этой схеме нагрузка транзистора включена не в коллекторную цепь, как это делается в обычном усилительном каскаде, а в эмиттерную. В результате коллектор с точки зрения входного сигнала заземлен (через источник питания), а схема получила название каскада с общим коллектором. Такой каскад не дает усиления напряжения, но зато позволяет как бы добавить «токовой мощности» высокоомному источнику сигнала, или, другими словами, снизить его выходное сопротивление.
Второе название такого каскада – эмиттерный повторитель, которое он получил от своей чрезвычайной линейности. Такое включение нагрузки, по сути, вводит в каскад отрицательную обратную связь глубиной в 100%. Ведь любое приоткрытие транзистора входным сигналом приводит к увеличению тока через нагрузку, а значит и повышению напряжения на эмиттере транзистора. В результате любое увеличение напряжения на базе относительно эмиттера приводит к синхронному увеличению напряжения на эмиттере на такую же величину. Или, другими словами, напряжение на нагрузке просто повторяет напряжение на входе каскада. Но, не смотря на кажущееся отсутствие усиления, ток, текущий через нагрузку, в идеальном случае ограничен только ее сопротивлением, и при этом почти весь он берется из цепи питания, очень слабо нагружая источник входного сигнала.

В нашем случае каскад нагружен резистором на 75 Ом, что обеспечивает идеальное согласование со входом тюнера, а высокая линейность повторителя дает нам возможность легко перекрыть весь диапазон 0-30 МГц, не потеряв ни децибела. Единственное «но»: транзистор для этого каскада желательно подобрать с большим коэффициентом передачи тока, лучше, если он будет 200 единиц или выше. Большинство экземпляров транзистора 2N2222A удовлетворяют этому условию (если не отбраковка, конечно), но все-таки лучше перепроверить хотя бы простым китайским мультиметром.
Не путайте транзистор 2N2222A с его близким родственником P2N2222A, который имеет очень похожие параметры, но отличается цоколевкой. У обоих транзисторов база выведена на центральную ножку, а вот коллектор и эмиттер располагаются в зеркальном отражении, поэтому на приведенную ниже печатную плату P2N2222A должен устанавливаться с разворотом на 180 градусов.

Еще одним крайне желательным элементом конструкции является реле, позволяющее использовать тюнер и в его «родном» диапазоне частот. Согласитесь, было бы обидно получить чисто коротковолновый приемник, если буквально одной деталью можно сделать его универсальным. Принцип действия реле известен всем, и в данном случае один переключающий контакт просто должен коммутировать вход тюнера между выходом преобразователя частоты и гнездом УКВ-антенны.
Очень важным в данном случае параметром оказывается то, что не часто встретишь в даташите на реле – минимальные напряжение и ток коммутации. Именно минимальные! Проблема в том, что даже замкнутые контакты обычного реле могут оказаться не соединенными друг с другом в строгом смысле. Из-за окислов и эрозии между ними может получиться тончайший непроводящий зазор, который мгновенно пробивается напряжением даже в доли вольта и спекается от тока в десяток микроампер. Однако при коммутации приемной антенны у нас далеко не всегда есть сотни милливольт и десятки микроампер. Поэтому слаботочные реле имеют специальную конструкцию и особое покрытие токопроводящих элементов (вплоть до «мокрого» ртутного контакта), которые обеспечивают надежную коммутацию цепей с субмикронными напряжениями и токами.

Как оказалось, слаботочные высокочастотные реле довольно редкие и дорогие, поэтому пришлось искать замену. Наиболее доступным и подходящим вариантом оказалось герконовое реле. В его основе лежит геркон (герметичный контакт), представляющий собой герметичную стеклянную трубку с впаянными в ее торцы упругими позолоченными или родированными стальными пластинами. Трубка заполнена инертным газом, исключающим образование окислов. Управление осуществляется током в катушке, которая намотана на геркон: под действием магнитного поля стальные пластины изгибаются и замыкают или размыкают цепь.


К сожалению, все доступные в местной продаже импортные герконовые реле оказались с одним замыкающим контактом, не позволяющим переключать источники сигнала. Городить два отдельных реле не хотелось, поэтому пришлось выпаять из старой советской платы от какого-то измерительного прибора реле РЭС55А. Это герконовое реле с одним переключающим контактом, вполне пригодное для коммутации приемной антенны в диапазоне коротких волн.
Маркировка реле производства СССР определяла в основном его форм-фактор, а не электрические характеристики. Такие параметры, как сопротивление обмотки, напряжение и/или ток срабатывания, а иногда даже используемый материал контактов, определялись так называемым «паспортом», или «исполнением». При этом тип паспорта на корпусе почему-то присутствовал далеко не всегда. В результате определение конкретных характеристик иногда превращалось в своеобразный квест. Например, напряжение срабатывания можно было косвенно определить по оммическому сопротивлению обмотки. Измеренное значение нужно было найти в таблице паспортов данного типа реле и по нему определить конкретный тип и остальные характеристики. Особой пикантности процессу прибавляло то, что сопротивление обмотки могло совпадать не только для реле с, например, разным материалом контактов (что как раз понятно), но и у реле с разными напряжениями срабатывания.

На напряжение 5 вольт рассчитаны реле РЭС55А с паспортами 03xx, 08xx, 11xx, 16xx (они же РС4.569.600-03, РС4.569.600-08, РС4.569.600-11 и РС4.569.600-16 соответственно). Также можно использовать 6-вольтовые модификации 02xx, 07xx, 15xx (РС4.569.600-02, РС4.569.600-07, РС4.569.600-15). Сопротивление обмотки у всех подходящих исполнений от 57 до 110 ом.

В принципе, можно использовать любое малогабаритное герконовое реле, правда, нужно будет переработать под него чертеж печатной платы под его распиновку. Желательно также, чтобы реле было новым, или хотя бы не использовалось ранее в цепях с напряжением выше десятка вольт и током более единиц мА.

Схема

Практическая схема конвертера имеет такой вид:


В ней мы видим уже знакомый ФНЧ, собственно микросхему преобразователя частоты с обвязкой, выходной согласующий каскад на транзисторе, и коммутирующее реле. Коммутация входа тюнера ANT на выход преобразования производится автоматически одновременно с подачей питания на схему.

Не очень понятным может показаться назначение резистора R1 и конденсатора C1, но если вспомнить то, что хорошая коротковолновая антенна может достигать длины нескольких десятков метров, то возникает мысль и об атмосферном электричестве. Нет, от прямого удара молнии в антенну ничего не спасет, а вот от статики и наведенного далеким разрядом импульса вполне можно обезопаситься. Резистор R1 (желательно мощностью 1 Ватт) просто открывает пусть статическому электричеству на землю, а конденсатор C1 (это должен быть высоковольтный керамический конденсатор на напряжение не менее 1 кВ) препятствует попаданию этого электричества на вход микросхемы. В прочем, если прием планируется только на укороченную антенну, то резистор можно вообще не устанавливать, а конденсатор заменить перемычкой (или обычным, не высоковольтным керамическим конденсатором той же емкости).

Диод D1, включенный параллельно обмотке реле, гасит индукционный выброс, возникающий в момент отключения питания схемы. Обмотка реле имеет значительную индуктивность и накапливает в своем магнитном поле немало энергии. При прекращении протекания постоянного тока, эта энергия высвобождается в виде импульса напряжения обратной полярности, который в нашем случае поступает прямо на шину питания всего устройства, включая тюнер. На этом месте можно использовать любой малогабаритный диод с максимальным обратным напряжением 10 вольт или больше.

Включение микросхемы в основном соответствует референсу из даташита. Для переноса входного сигнала в рабочий диапазон тюнера нужен генератор на частоту 40 МГц или выше. При этом нужно учитывать такие факторы:

  • Радиочастотный модуль R820T рассчитан на работу в диапазоне от 42 МГц, поэтому на более низких частотах его чувствительность и даже работоспособность не гарантирована.
  • В полученном диапазоне переноса нежелательно наличие мощных передающих станций, потому что их сигнал может попасть на вход тюнера минуя преобразователь частоты и все испортить.
  • Частота гетеродина должна быть предельно стабильной, ведь любое ее изменение сбивает настройку на передатчик.
Для максимальной стабилизации частоты, гетеродин выполнен с использованием кварцевого резонатора.


Кварцевый резонатор (или просто «кварц») – это тонкая пластина кварца, на разные стороны которой нанесено проводящее напыление. Пластина вырезана из монокристалла чистого диоксида кремния, который имеет свойство механически колебаться под действием электрического поля, приложенного вдоль некоторых осей. Как и любая механическая колебательная система, пластина имеет собственную частоту резонанса, которая определяется ее формой и толщиной. Если к металлическому напылению подвести переменное напряжение, то пластина начнет колебаться в такт с изменениями электрического поля, а оказываемое ею электрическое сопротивление, будет зависеть от частоты этих колебаний. На частоте резонанса сопротивление резко изменяется в сотни и тысячи раз, что позволяет использовать такую пластину как частотозадающий элемент генератора. Преимуществом кварца является его высокая стабильность и удобство использования в генераторах колебаний. Именно поэтому его можно найти практически в любом электронном устройстве.

Идеальной для переноса была бы частота гетеродина 120-125 МГц. При таком ее значении весь участок 0-30 МГц переносится в относительно «тихий» диапазон волн, где нет вещательных передатчиков.
Используемая во многих китайских конвертерах частота гетеродина 100 МГц является крайне неудачной. Ведь в этом случае самый интересный диапазон 0-8 МГц после переноса вверх попадает в область УКВ-радиовещания. Мощный сигнал вещательной FM-станции часто может быть принят даже резистором на плате, после чего он наложится на перенесенный сюда же слабый сигнал КВ-передатчика и сделает его прием невозможным.

Однако создать надежный и стабильный кварцевый генератор на частоту за сотню МГц достаточно сложно. Для этого пластина кварца должна иметь такую малую толщину, что получить ее механической обработкой уже невозможно. Такие кварцы делаются путем химического травления и крайне труднодоставаемы.

Другой путь достижения высоких частот – это генерация не на основной частоте пластины, а на одной из механических гармоник. Подобно гитарной струне, пластина кварца может колебаться не только на своей «фундаментальной» частоте, но и на нечетных обертонах. Если внедрить в схему генератора другой частотозадающий элемент, подавляющий генерацию на основной частоте, то некоторые кварцы начинают колебаться с частотой третьего обертона. А еще более некоторые пластины при должном упорстве можно заставить генерировать на пятом или седьмом обертоне.

Эксперименты с кварцами 14-25 МГц, выпаянными из старого компьютерного хлама и купленными в Китае, показали, что большинство из них непригодно для работы даже на третьем обертоне. Видимо их пластины вырезаны таким образом, что их активность на гармониках оказывается крайне низкой, и генератор либо вообще не возбуждается, либо скатывается на фундаментальную частоту не глядя на подавляющий элемент. Конечно, при должном упорстве можно найти кварц, который заработает на седьмой гармонике и даст частоту более 100 МГц, но это оказалось не так просто, да и трудоемкость настройки такого генератора уже выходит за рамки простейшей конструкции. Поэтому было решено пойти на компромисс и использовать перенос на частоту около 50 МГц. Полученный при этом рабочий участок 50-80 МГц тоже накладывается на старый вещательный УКВ-диапазон 66-74 МГц, однако сегодня в большинстве мест он фактически заброшен по причине малой распространенности поддерживающих его радиоприемников.

Отдельной проблемой являются первые три канала телевизионного вещания, которые тоже попадают в этот диапазон и часто могут стать причиной помех. Но в городах вещание на этих каналах сегодня ведется довольно редко, а в сельской местности расстояние до передатчика обычно позволяет не беспокоиться о помехах.

В любом случае при наличии помех на КВ, стоит попробовать отключить от устройства УКВ-антенну, которая через емкость реле и монтажа всегда имеет некоторую связь со входом тюнера.

Почти все современные кварцы с маркировкой выше “40.000”, являются гармониковыми, т.е. изначально предназначены для работы на третьем (или более высоком) обертоне. Если поставить такой кварц в схему без подавления «фундаментальной» частоты, он, скорее всего, будет генерировать или на трети от заявленной, или сразу на двух частотах. Например, из купленного в китайском интернет-магазине набора кварцев на 1-48 МГц, последний оказался гармониковым. Но запросто можно встретить такой кварц и на 40 МГц, а среди старых изделий 20-и и более летней давности гармониковыми является большинство кварцев с частотами от 25 МГц.

Можно, конечно, использовать отдельную микросхему генератора нужной частоты, но это дополнительный корпус на плате, дополнительный потребитель тока, да и придется решать проблему согласования выходного напряжения этого генератора и гетеродинного входа смесителя.

В общем, окончательный вариант преобразователя использует гармониковый кварц с маркировкой “49.475”, выпаянный из старого аналогового радиотелефона. А для подавления фундаментальной частоты в схему генератора добавлен контур L4/C8, настроенный частоту третьего обертона. Именно благодаря этому контуру генерация на 16.5 МГц оказывается невозможной и у кварца просто не остается других вариантов.

В схеме с указанными номиналами L4 и C8 без проблем заработают все кварцы с маркировкой примерно от “45.000” до “55.000”, а также некоторые “15.000”-“18.500”. Если цифра на корпусе выходит за эти пределы, то индуктивность L4 и/или емкость C8 придется изменить, чтобы частота полученного контура примерно соответствовала нужной частоте генератора (формула расчета частоты LC-контура ищется в интернетах за 30 секунд). При использовании «фундаментального» кварца, например, на частоту 40 МГц, катушку L4 нужно просто удалить из схемы, ничем ее не заменяя.

Узнать, заработал ли кварц, очень просто. Достаточно в уже собранной схеме настроить тюнер на его частоту. При наличии генерации, в спектре будет виден пик сигнала гетеродина, который бесследно исчезает при переключении конвертера в режим УКВ. Этим же способом определяется точное значение частоты гетеродина, которое нужно внести в настройки ПО.


Нет необходимости специально искать кварц с «круглым» номиналом. Во-первых, на коротких волнах в режиме SSB актуальна настройка с точностью не хуже 100 Гц, что все равно превышает погрешность калибровки большинства кварцев. А во-вторых, программное обеспечение для RTL-SDR позволяет установить произвольную частоту сдвига, и после этого шкала настройки будет показывать уже откорректированную частоту вне зависимости от номинала кварца.

Монтаж

Разводка печатной платы показана на рисунках:



архив с файлами схемы и печатной платы

Плата двусторонняя, но это обусловлено в первую очередь монтажом разъемов, вся схема преобразователя частоты разведена на нижнем слое, а верхний, раз он все равно есть, используется в качестве экрана.

Еще одним отсутствующим на схеме элементом является жестяной экран вокруг всех дискретных деталей, образующих кварцевый генератор. По той причине, что выход смесителя подключен к довольно чувствительному устройству в виде ТВ-тюнера, необходимо минимизировать утечку сигнала гетеродина, к которому тюнер так же чувствителен, как и к полезному сигналу. Контактные площадки для монтажа экрана окружают кварц Q1, катушку L4, конденсаторы C7-C9, и все они соединены с «землей». Металлический корпус кварца также заземляется на этот экран в своей верхней части при помощи проволочной перемычки.

Если нет медной жести, то экран можно сделать из консервной банки, или из баллончика от пены для бриться, лака для волос и т.п. И консервные банки, и флаконы бывают сделаны как из алюминиевого проката, так и из луженного стального листа. Алюминиевые не притягиваются к магниту и не паяются, поэтому использовать нужно стальные. Такая жесть легко режется обычными ножницами, она уже залужена, поэтому паять ее – одно удовольствие.

Припаять экран можно или на проволочные стойки, или продев в отверстия платы тонкие жестяные «язычки», оставленные при его вырезании.

В моей плате тюнер устанавливается не горизонтально, как в оригинале, а вертикально для экономии места. Вырез фигурной формы позволяет припаять его общим проводником к «земле» главной платы с обеих сторон, а питание и линии данных от USB-разъема к нему нужно подвести короткими гибкими проводниками. Положение всех разъемов и светодиода сохранено для того, чтобы оригинальный корпус можно было использовать с минимальными доработками. Единственное отличие заключается в использовании сдвоенного двухцветного светодиода с общим катодом, который позволяет отображать оба режима работы устройства. Отверстие для переключателя режимов работы нужно просверлить самостоятельно в той же боковой планке, которая имеет вырез для USB и светодиода.


Переключатель режимов работы – обычный миниатюрный тумблер или фиксирующаяся кнопка с одним переключающим контактом, который в одном положении подает питающее напряжение на всю схему, а в другом – только на одну половину индикаторного светодиода. Все соединения переключателя с платой выполнены гибким изолированным проводом.

Устройство после сборки (см. КДПВ) внешне мало отличается от того, что получилось бы при монтаже исходного набора, однако это уже девайс совсем иного класса.

Настройка ПО

В качестве примера буду использовать популярный продукт SDRSharp, который умеет работать с переносом частоты. Точную частоту кварцевого генератора нужно ввести в поле Shift с отрицательным знаком. Подробно останавливаться на тонкостях настройки программы для работы в диапазоне коротких волн не буду, потому что этого добра в сети и так навалом. Но не могу умолчать об одной особенности, о которой не все знают.

Методику определения частоты кварца я описывал выше, но нужно учитывать тот факт, что каждый экземпляр тюнера имеет некоторую индивидуальную погрешность настройки. При работе с широкополосными сигналами TV- и FM-трансляций такая погрешность никак не влияет на работоспособность, однако при приеме узкополосных видов модуляции (особенно SSB и CW) она часто превышает ширину канала. Поэтому перед измерением точной частоты кварца нужно откалибровать сам тюнер.

Для калибровки нужно принять тюнером любой сигнал, частота которого точно известна. Вещательные передатчики обычно стабилизированы очень тщательно, поэтому в качестве эталона вполне можно использовать любую FM-станцию. Но сигнал вещательного УКВ-передатчика достаточно широкополосный, в то время как для калибровки тюнера из всего спектра нужно выделить несущую частоту. Проще всего это сделать в тот момент, когда нет модуляции, т.е. при передаче тишины. В этот момент спектр излучения стереофонического передатчика принимает вид тризубца или более сложной фигуры с несколькими узкими пиками, центральный из которых соответствует несущей частоте.

Поймать момент тишины бывает непросто, но в этом деле хорошо помогает функция SDRSharp, позволяющая записать на диск «сырой» сигнал из эфира, а затем циклически воспроизводить его точно так, как если бы работал реальный тюнер. Если в запись попадет хотя бы один момент тишины, то возвращаясь к нему вновь и вновь, можно зафиксировать точную частоту несущей.


Реальная частота передатчика может быть определена по ближайшему значению, кратному 100 кГц. На скриншоте тюнер принимает сигнал 95 998 350 Гц, хотя очевидно, что вещательная станция работает на 96 000 000 Гц. Для калибровки нужно изменить параметр «ppm» настроек так, чтобы центральный пик располагался симметрично вокруг отметки шкалы, соответствующей действительной частоте сигнала.


Примерное значение PPM можно вычислить по формуле:

где: f – реальная частота передатчика; F – частота настройки тюнера. Вычисленное значение (в моем случае оно равно 17) можно использовать в качестве отправной точки, а точная величина, полученная при просмотре более узкополосных спектров, скорее всего, будет немного отличаться.

В качестве эталона можно использовать и другие сигналы, если есть уверенность, что они имеют достаточную точность установки частоты. Не стоит сильно доверять передатчикам связных УКВ-радиостанций (особенно дешевых китайских «побрякушек»), т.к. для них погрешность в несколько сотен Гц является вполне допустимой и совершенно незаметной при работе. Передатчики «серьезных» служб, например, диспетчерской вышки ближайшего аэропорта, скорее всего, достаточно точны, а вот частотам «бортов» уже слепо верить не стоит.

Можно попробовать использовать в качестве эталона сигналы передатчиков базовых станций сотовой связи в диапазоне 850 или 900 МГц. Существует даже специальная утилита “Kalibrate-RTL”, которая позволяет автоматизировать этот процесс. Частоты каждого канала жестко определены стандартом и выдерживаются с высокой точностью, поэтому методом сравнения того, что поймал тюнер, и того, что должно быть вблизи текущей настройки, можно вычислить погрешность. В моем случае программа выдала совершенно неадекватное значение PPM, хотя отклонение частоты от номинала было определено правильно, и при помощи вышеприведенной формулы я получил то же самое значение, что и от вещательного передатчика.


Также на погрешность настройки немного влияет температура тюнера, поэтому начинать калибровку желательно после 10-15-минутного прогрева в рабочем режиме.

После запуска конвертера калибровку можно будет уточнить по сигналам коротковолновых радиовещательных станций, чей спектр гораздо больше подходит для этого. Однако по той причине, что на КВ-настройку может влиять как калибровка самого тюнера, так и точность ввода частоты гетеродина, определить, что из них корректировать, будет сложнее. Например, если путем коррекции значения частоты гетеродина в поле Shift удалось совместить настройку с реальной частотой передатчика в одном диапазоне, но соответствие нарушается на других диапазонах, значит дело в калибровке тюнера. Если же все станции смещены на одинаковую величину, то корректировать нужно именно поле Shift.

Собственно, все. Удачных вам прохождений, 73!

Как вы знаете, я интересуюсь тематикой раций, и даже иногда делаю обзоры на некоторые свои девайсы.
Вот и сегодня я решил рассказать про довольно интересную штуку. Приёмник сигналов RTL-SDR построенный на базе R820T 8232.
Также расскажу, как настроить этот приёмник для работы на компьютере и на android телефоне\планшете.
Итак, про SDR приёмники уже есть несколько обзоров. Поэтому я не буду подробно рассказывать, что это.
Скажу лишь что можно купить более дешевый вариант приёмника, и доделать его паяльником.
Типа такого:


Можно купить kit-набор. Типа такого:


()
И собрать приёмник, потратив на это несколько вечеров, заодно прокачав скилл паяльщика.
Или же сделать как я: купить уже готовое к приёму всего нужного изделие, которое можно использовать без танцев с бубном. Разница в цене не сильно большая, поэтому я купил готовый приёмник, с дополнительной платой, всеми нужными перемычками в нужных местах, и даже двумя выходами под антенны.
Данный конкретный приемник может принимать сигналы и охватывать все ВЧ любительских диапазонов:
охватывает УКВ и увч 24-1766 МГц
до 3.2 М частота Дискретизации (~ 2.8 МГц стабильный)
приемник режимов, МСЧ, FM, ПРОИЗВОДСТВО USB, LSB и CW
Что это значит? А это значит, что мы можем слушать передачи на следующих диапазонах:
13-15Мгц это дальние вещалки на подобии голоса америки.
15-28МГц можно услышать любительскую радиосвязь.
27.135МГц это канал дальнобойщиков (удобно слушать в дальних поездках).
30-50МГц может находиться скорая помощь.
87.5-108МГц это обычное фм радио.
109-500МГц самое интересное)
108-136МГц это авиадиапазон (тут разговаривают пилоты, не без шуток и приколов)
137-138МГц это диапазон спутников NOAA (погода со спутника в низком разрешении)
144МГц опять же радиолюбители
150МГц это жд диапазон.
433МГц тоже радиолюбители, рации-болтушки, брелки сигналок, шлагбаумов и прочего эфирного мусора
446МГц тоже болтушки
дальше уже зависит от города, кстати, полиция тоже где-то тут) но где- не скажу)
~900МГц сотовая связь.

Еще больше инфы можно почерпнуть на сайте
Теперь непосредственно про приёмник.
Приёмник был заказан на банггуде. (там он был в наличии, на момент покупки. И цена была хорошей.) Заказывал 2 приёмника:


Доставка заняла 30 дней. На почте получил посылку с двумя коробками. Одна коробка с приёмником пока лежит до лучших времен (позже поставлю в машину) а первая используется для тестирования и настройки.
Приёмник приходит в обычной коробке. Которая еще и малость пострадала:


Внутри находятся приёмник, антенна, mini-usb кабель:


Больше по сути ничего и не надо.
Подробности.
Кабель:




Кабель самый обычный mini-usb. Я его кстати даже не стал использовать. Так как у меня есть свой, более длинный и качественный.
Антенна:




Имеет магнитную площадку. Магнит довольно крепкий. Хорошо держится на вертикальных металлических поверхностях.


Сам приёмник:
Ничем не примечательная коробочка.




Имеет размеры 90*50*22мм:





С одной стороны, имеются разъемы для подключения двух антенн:


С другой стороны, разъём mini-usb для подключения к компьютеру и светодиод индикации питания:


Если не знать наверняка, даже и не понять, что это за устройство такое. Тем более что никаких опознавательных надписей на коробке нету. (да и они не нужны )
Пара фоток в интерьере, вместе с рацией wouxun:




В комплекте идёт только 1 антенна, несмотря на наличие двух разъёмов для разных частот.
Для работы на частотах 100khz-30MHz нужно докупать вторую антенну. При условии, что вы хотите чтото слушать в этом диапазоне.
Перед тем как использовать, я решил разобрать приёмник. Причина проста. Внутри что-то как-то странно болталось. (болтанка присутствует на обоих экземплярах приобретенных мной приемников)


Весь процесс разбора состоит из выкручивания 4 винтиков:








Даже на фото видно, что распаяно всё аккуратно. Следов флюса или прочего криминала не видно.
Видно, что это DVB приёмник распаянный на плате. Основные чипы R820T и 8232:


Больше рассказать ничего не могу. Так как не силён в схемотехнике. На фото всё итак видно.
Теперь про то что гремело внутри. Это сама плата. Она немного меньше пазов корпуса и немного короче. Потому и болталась внутри. Я этот вопрос решил просто. Приклеил вспененный 2-сторонний скотч внутри корпуса, и вставил плату на место:


Всё закрутилось плотненько. Люфт и болтание ушли.
Теперь расскажу про настройку и тестирование:
Для работы с приёмником на Windows комплютере, нам нужно использовать программу sdrsharp

Для установки правильных драйверов, нужно запустить программу zadig.exe
Если в сборке с шарпом у вас ее нет,
Запускаем, выбираем options - list all devices
Выбираем пункт Builk-In, Interface (interface 0) и нажимаем кнопку Reinstall Driver:


После этого нужные драйвера будут установлены в системе, и можно запускать программу SDRSharp.
Тут всё просто. В настройках выбираем нужный порт, и нажимаем кнопку старт:




Частоты можно вводить как вручную, так и использовать различные плагины для сканирования.
(работа с программой потянет на отдельную статью, уж очень много в ней возможностей. Поэтому я показываю поверхностно, а заинтересованные могут уже найти в интернете подробности)
Для чего нужен подобный приёмник?
Несмотря на комментарии про всякие злодеяния, и про то что посодють, этот приёмник на самом деле вполне легален. И использовать его можно в легальных целях. Да и к тому же слушать эфир у нас НЕ ЗАПРЕЩАЕТСЯ. А передать что-то в эфир с помощью этого приёмника невозможно. Поэтому с помощью приёмника мы можем послушать радио. Да, обычное радио. Вдруг у вас нет ни одного устройства умеющего принимать сигналы местных радиостанций, а радио послушать ужасть как хочется-приёмник поможет.
Еще с помощью приёмника можно послушать радиолюбителей, вещающих на частотах 15-28МГц
Но нужна более мощная антенна. Та что идёт в комплекте позволит принимать сигнал только находясь недалеко от источника этого самого сигнала.
Еще с помощью приёмника можно проверять рации. Классическая ситуация: принесли старую рацию без дисплея. Рабочую, но неизвестно на какой частоте. Можно данный приёмник использовать для выявления. (конечно есть отдельные приборы для замера частоты и мощности, но если есть приёмник, можно обойтись им)
Ну и, например, поехали мы в дальнюю дорогу. Своим ходом на машине. Почему бы нам не настроить приёмник на частоту дальнобойщиков СВ (27.135 МГц ), чтобы послушать переговоры? Чтобы знать, что творится на дороге? Где засада ГАИ, где аварии, где объезд и т.д.
Кстати именно для прослушивания CВ диапазона не обязательно подключать приёмник к ноутбуку. Можно использовать телефон на android. И не только для этого диапазона.
Я подключил приёмник к своему Xiaomi Mi5 через копеечный OTG-адаптер. Тут настройка еще проще чем на компьютере:
Идём на 4PDA.ru и качаем программу
Вместе с программой качаем Rtl-sdr driver 3.06 и ключ для получения полного функционала. (можно конечно купить ключ на маркете, но я старый пират, которому претит платить за софт )
Устанавливаем на телефон:

Скриншоты с приложения:









Как видим всё прекрасно работает, и также позволяет слушать эфир.


Я проверял этот приёмник с моими рациями Baofeng, Wouxun, WLN. Всё прекрасно ловится.
Также при помощи сканера смог найти несколько частот, на которых шли разговоры. Что подтверждает работоспособность приёмника.
Приёмник у меня в основном для хобби, но есть интерес послушать коротковолновиков из других стран, поэтому сейчас выбираю антенну к этому приёмнику (буду благодарен если в комментариях предложите свои варианты)
Заключение:
Этот приёмник отличный вариант для людей, интересующихся радио. Он позволяет узнать много нового, а также слушать эфир без покупки дорогого оборудования.
Отговаривать или рекомендовать к покупке этот товар я не могу. Слишком специфичный товар. Я лично покупкой прям очень доволен. И это самое главное.
В следующем месяце у меня планируется дальняя поездка на машине, и я ее жду не столько ради цели поездки, сколько ради возможности послушать переговоры и протестировать приёмник в полевых условиях.

Планирую купить +105 Добавить в избранное Обзор понравился +107 +195

RTL-SDR – широко известное сочетание букв в среде радиолюбителей. Дешевые и доступные, можно сказать уже, народные SDR приемники из поднебесной несколько лет назад стали настоящим открытием для многих радиолюбителей. Куча народу потратило очень много времени и сил для того, чтобы реалтековский чип смог из обычного DVB-T приемника превратиться в полноценный сверхширокополосный SDR. И в этом обзоре я расскажу вам о следующей ступени эволюции этого приемника.

Я давно краем глаза поглядывал за тем, чем занимаются ребята из RTL-SDR.COM и таки сподобился заказать себе уже третью версию их свистка. О говорить бессмысленно, про него не писал только уже ленивый, а вот что нам могут предложить ребята из RTL-SDR? На мой взгляд, в их устройстве, на данный момент, реализованы все доработки которые были рождены и опробованы сообществом любителей RTL-SDR на практике. В итоге получилась классная игрушка как для начинающих, так и для продвинутых радиолюбителей. Пройдемся по основным пунктам отличающим этот приемник от конкурентов

Корпус

Ну, во-первых, это алюминиевый корпус, а не пластиковый, как на дешевых собратьях.

Что само по себе хорошо с точки зрения защиты от помех. Во-вторых корпус играет еще и роль теплоотвода, поскольку у платы приемника есть связь с корпусом через теплопроводящую силиконовую прокладку, которая кроме теплоотвода выполняет роль аммортизатора.

Корпус сделан из алюминиевого профиля и закрыт с двух сторон крышками, через которые с одной стороны выведен антенный разъем типа SMA который для жесткости закрепляется еще и гайкой.

А с другой стороны USB.

В целом, конструкция достаточно надежная. На мой взгляд, немного похабно выглядят саморезы которые крепят крышки корпуса, но это мелочи.

Внутри

Ребята из RTL-SDR.com сделали полностью свою, совершенно новую плату. В результате чего по утверждениям разработчиков удалось значительно снизить внутренние шумы схемы и уменьшить количество пораженных частот.

На плате, как и положено, разместились RTL2832U

И приемник от Rafael Micro R820T2. Все как у классического свистка. Но на этом сходство и заканчивается.

У нового девайса установлен термокомпенсированный опорный генератор от WTL на 28.8МГц расположенный в центре платы, что логично и правильно. К сожалению на офф. сайте WTL не смог найти описание на этот компонент, было бы интересно посмотреть на характеристики…

Для полного представления о новом приемнике проще всего посмотреть на схему которую я любезно позаимствовал .

Изучение особенностей платы начнем от антенного входа. Здесь расположился трехзвенный LC фильтр и небольшой малошумящий широкополосный предусилитель (на фото обозначен стрелкой) предположительно на микросхеме типа BGA2711. Далее идет еще один фильтр + согласующие цепочки.

А затем уже идет развязывающий трансформатор подключающийся непосредственно к RTL2832U.

Для питания микросхем приемника в RTL-SDR.com используют мощный малошумящий стабилизатор напряжения на AP2114. Для сравнения, в обычных «свистках» используется AMS1117.

Для питания активных антенн у RTL-SDR.com есть т.н. инжектор питания на 4.5 вольта, реализованный на отдельном переключателе (на фото обозначен стрелкой) который управляется непосредственно через интерфейс RTL2832U. На мой взгляд 4.5 вольта это как-то маловато, для питания, например, той же Mini-Whip, но это напряжение можно использовать, например как контрольное для включения/выключения схем управления питанием антенн. Здесь же по входу стоит диодная сборка BAV99. Это двадиода включенных встречно-параллельно, по сути, обычный диодный ограничитель защищающий чувствительный вход приемника (на фотографии A7W).

Также интересной особенностью является возможность масштабирования, например можно несколько приемников использовать одновременно для мониторинга разных диапазонов, при этом есть возможность подключения внешнего высокостабильного опорного генератора вместо встроенного TCXO, если он по какой-то причине Вас не устраивает. Для этого необходимо выполнить ряд манипуляций с паяльником, что для продвинутого радиолюбителя не является большой проблемой. Так же есть еще ряд интересных моментов, например на плату удобным образом выведены порты GPIO, CLK вход/выход опорного сигнала, 3,3 В, GND, I2C, которые также могут быть использованы продвинутыми радиолюбителями в своих целях.

SDRSharp

Здесь все как всегда, скачиваем SDRSharp с официального сайта , распаковываем в удобную для работы директорию, например: C:\SDRSharp и если раньше у Вас никогда не было в хозяйстве свистков на RTL2832, запускаем файл install-rtlsdr.bat который скачает нам драйвера и утилиту для их установки. Вставляем наш приемник в USB. Далее запускаем скачанный в ту же самую директорию файл zadig.exe и видим перед собой вот такое вот окно.

При этом, если вместо Bulk-In Interface (Interface 0) пустота, то проверьте, чтобы в меню Options стояла галочка List All Devices, далее в списке выбираем Bulk-In Interface (Interface 0) и жмем кнопку Install Driver. Собственно после установки можно запускать SDRSharp.exe, выбирать в списке приемников RTL-SDR (USB), и работать.

Прием КВ и УКВ

Для приема средних и коротких волн (500 кГц — 24 МГц) необходимо из режима квадратурного семплирования (Quadrature sampling) который используется для приема УКВ (24 МГц — 1200 МГц)

переключиться в режим прямого семплирования с порта Q branch (Direct sampling (Q branch)).

Испытания

Для изучения характеристик приемника использовался мой рабочий ноутбук Asus R510C. Принимаемый сигнал снимался со встроенной звуковой карты. В качестве источника сигнала и анализатора использовался прибор Rohde&Schwarz CMS 52. Увы, измерения удалось провести только до частоты 1ГГц, выше мой прибор уже не способен работать. Параметры при которых проводились измерения были выбраны такие же как при испытаниях приемника о котором я уже писал на страницах журнала.

Параметры для SSB: Тон 1кГц. Режим демодуляции приемника USB, RTL-AGC – On. Чувствительность приемника при SINAD 12дБ. Полоса приемника 3кГц.

Параметры для AM: Тон 1кГц. Режим демодуляции приемника AM, глубина модуляции 80%. RTL-AGC – On. Чувствительность приемника при SINAD 10дБ

Параметры для FM: Тон 1кГц. Режим демодуляции приемника NFM, девиация частоты 2кГц. RTL-AGC – On. Чувствительность приемника при SINAD 12дБ

Короткие волны (режим прямого сэмплирования (Q branch))

УКВ (режим квадратурного семплирования)

Как видно из результатов измерений предусилитель на КВ делает свое дело, и если у чувствительность была довольно низкая, то у девайса от RTL-SDR.com все в принципе не плохо. В режиме квадратурного сэмплирования немного удивила чувствительность на 12м-10м диапазонах, она не катастрофически низкая, но с трудом дотягивает до уровня не самой совершенной си-бишки, что наводит на размышления о том, что ребята разработчики несколько перемудрили с фильтром, для получения более высокой чувствительности придется немного подкорректировать номиналы элементов на входе в R820T. В остальном, чувствительность как на КВ, так и на УКВ отменная и заслуживает всяческих похвал.

Нагрев

В режиме квадратурного сэмплирования, когда устройство работает на полную мощность, корпус девайса достаточно сильно греется. Благодаря теплопроводящей прокладке, тепло с платы приемника передается на корпус и последний нагревается до достаточно больших температур, около 45 градусов по Цельсию.

RTL-SDR и другие ОС

Самое приятное для меня было в том, что приемник от RTL-SDR.COM, собственно как и другие аналогичные устройства на базе RTL2832U без проблем работают на моем стареньком MacBook. Просто скачиваем и устанавливаем CubicSDR, подключаем свисток в USB и у нас все готово для работы, никаких танцев с бубном не требуется.

Итог

А итог, надо сказать, весьма радостный. Всего за 20 долларов, да, да, всего за 20 долларов Вы получаете отличный гаджет для мониторинга как коротких, так и ультракоротких волн. Немного разочаровал фильтр на входе в R820T, но это не столь критично. В остальном RTL-SDR.com v.3 работает стабильно и без каких-либо проблем. Так что всем, кто все еще хочет попробовать и испытать на себе, что такое SDR, но по каким-то причинам сомневается, настоятельно рекомендую.