Чем отличается интерфейс PCI Express от PCI? Интерфейс PCI в компьютере: виды и назначение. Фото Слоты pci express 3.0 на материнских платах

ВведениеРаньше массового покупателя интересовало главным образом лишь два типа твердотельных накопителей: либо высокоскоростные модели премиального уровня вроде Samsung 850 PRO, либо выгодные по соотношению цены и производительности предложения, такие как Crucial BX100 или SanDisk Ultra II. То есть, сегментация рынка SSD была крайне слабой, а конкуренция между производителями хоть и разворачивалась по направлениям производительности и цены, разрыв между решениями верхнего и нижнего уровня оставался достаточно небольшим. Такое положение дел было отчасти обусловлено тем, что технология SSD сама по себе существенно улучшает ощущения пользователя от работы с компьютером, и поэтому вопросы конкретной реализации для многих отходят на второй план. По этой же причине потребительские твердотельные накопители были вписаны в старую инфраструктуру, которая изначально ориентировалась на механические жёсткие диски. Это существенно облегчило их внедрение, однако заключило SSD в достаточно узкие рамки, которые во многом сдерживают как рост пропускной способности, так и снижение латентности дисковой подсистемы.

Но до определённых пор такое положение дел всех устраивало. Технология SSD была в новинку, и пользователи, переходящие на твердотельные накопители, оставались довольны своим приобретением даже несмотря на то, что по сути они получали продукты, которые на самом деле работают далеко не на пределе своих возможностей, а их производительность сдерживается искусственными барьерами. Однако к сегодняшнему дню SSD, пожалуй, можно считать уже самым настоящим мэйнстримом. Любой уважающий себя владелец персонального компьютера если и не имеет хотя бы один SSD в своей системе, то очень серьёзно настроен на его приобретение в самое ближайшее время. И в этих условиях производители просто вынуждены задумываться о том, чтобы развернуть, наконец, полноценную конкуренцию: разрушить все барьеры и перейти к выпуску более широких линеек продукции, принципиально различающихся по предлагаемым характеристикам. Благо для этого подготовлена вся необходимая почва, и, в первую очередь, большинство разработчиков SSD имеют желание и возможности для того, чтобы заняться выпуском продуктов, работающих не через наследственный SATA-интерфейс, а через куда более производительную шину PCI Express.

Поскольку пропускная способность SATA ограничена величиной 6 Гбит/с, максимальная скорость флагманских SATA SSD не выходит за величину порядка 500 Мбайт/с. Тем не менее, современные накопители, основанные на флеш-памяти, способны на гораздо большее: ведь если задуматься, то они имеют больше общего с системной памятью, нежели с механическими жёсткими дисками. Что же касается шины PCI Express, то сейчас она активно применяется в качестве транспортного уровня при подключении графических карт и прочих дополнительных контроллеров, нуждающихся в обмене данными с высокой скоростью, например, Thunderbolt. Одна линия PCI Express второго поколения обеспечивает пропускную способность на уровне 500 Мбайт/с, а линия PCI Express 3.0 может развивать скорость до 985 Мбайт/с. Таким образом, интерфейсная карта, устанавливаемая в слот PCIe x4 (с четырьмя линиями), может обмениваться данными на скорости до 2 Гбайт/с в случае PCI Express 2.0 и до почти 4 Гбайт/с – при использовании PCI Express третьего поколения. Это отличные показатели, которые вполне подходят и для современных твердотельных накопителей.

Из сказанного закономерно следует, что на рынке помимо SATA SSD должны постепенно находить распространение высокоскоростные накопители, использующие шину PCI Express. И это действительно происходит. В магазинах можно найти несколько моделей потребительских твердотельных накопителей от ведущих производителей, выполненных в виде карт расширения или M.2-плат, которые используют разные варианты шины PCI Express. Мы решили собрать их вместе и сравнить между собой по производительности и другим параметрам.

Участники тестирования

Intel SSD 750 400 Гбайт

На рынке твердотельных накопителей компания Intel придерживается довольно-таки нестандартной стратегии и разработке SSD для потребительского сегмента уделяет не слишком серьёзное внимание, концентрируясь на продуктах для серверов. Однако её предложения от этого не становятся неинтересными, особенно если речь идёт о твердотельном накопителе для шины PCI Express. В данном случае Intel решила адаптировать для использования в высокопроизводительном клиентском SSD свою самую прогрессивную серверную платформу. Именно таким образом и родился Intel SSD 750 400 Гбайт, который получил не только впечатляющие характеристики быстродействия и ряд технологий серверного уровня, отвечающих за надёжность, но и поддержку новомодного интерфейса NVMe, о котором несколько слов стоит сказать отдельно.




Если говорить о конкретных улучшениях NVMe, то в первую очередь упоминания заслуживает снижение накладных расходов. Например, пересылка наиболее типичных 4-килобайтных блоков в новом протоколе требует подачи лишь одной команды вместо двух. А весь набор управляющих инструкций упрощён настолько, что их обработка на уровне драйвера снижает загрузку процессора и возникающие при этом задержки как минимум вдвое. Второе важное нововведение – поддержка глубокой конвейеризации и многозадачности, заключающаяся в возможности параллельно создавать множественные очереди запросов вместо имевшейся ранее единой очереди на 32 команды. Интерфейсный протокол NVMe способен обслуживать до 65536 очередей, причём каждая из них может содержать до 65536 команд. Фактически какие-либо ограничения ликвидируются вообще, и это очень важно для серверных сред, где на дисковую подсистему может возлагаться огромное количество одновременных операций ввода-вывода.



Но несмотря на работу через интерфейс NVMe, Intel SSD 750 – это всё же не серверный, а потребительский накопитель. Да, почти такая же аппаратная платформа, как в этом накопителе, используется в SSD серверного класса Intel DC P3500, P3600 и P3700, но в Intel SSD 750 применена более дешёвая ординарная MLC NAND, а кроме того модифицирована прошивка. Производитель считает, что благодаря таким изменениям получившийся продукт понравится энтузиастам, поскольку он сочетает высокую мощность, принципиально новый интерфейс NVMe и не слишком пугающую стоимость.

Intel SSD 750 представляет собой PCIe x4 карту половинной высоты, которая может задействовать четыре линии стандарта 3.0 и развивать последовательные скорости передачи данных до 2,4 Гбайт/с, а скорость случайных операций – до 440 тысяч IOPS. Правда, наибольшей производительностью отличается наиболее ёмкая модификация на 1,2 Тбайт, полученная же нами на тесты версия объёмом 400 Гбайт немного помедленнее.



Плата накопителя полностью закрыта бронёй. С лицевой стороны это алюминиевый радиатор, а с оборотной – декоративная металлическая пластина, которая на самом деле с микросхемами не соприкасается. Следует отметить, что применение здесь радиатора – необходимость. Основной контроллер интеловского SSD выделяет немало тепла, и при высокой нагрузке даже оснащённый таким охлаждением накопитель может разогреваться до температур порядка 50-55 градусов. Но благодаря предустановленному охлаждению никаких намёков на троттлинг не наблюдается – производительность остаётся постоянной даже в процессе непрерывного и интенсивного использования.



В основе Intel SSD 750 лежит контроллер серверного уровня Intel CH29AE41AB0, который работает на частоте 400 МГц и обладает восемнадцатью (!) каналами для подключения флеш-памяти. Если учесть, что большинство контроллеров для потребительских SSD располагают либо восемью, либо четырьмя каналами, становится понятно, что Intel SSD 750 действительно может прокачивать по шине значительно больше данных, чем привычные модели SSD.



Что касается используемой флеш-памяти, то в этой части Intel SSD 750 не проводит никаких инноваций. Он основывается на обычной MLC NAND интеловского же производства, выпущенной по 20-нм техпроцессу и имеющей ядра объёмом и 64, и 128 Гбит вперемежку. Следует заметить, что большинство прочих производителей SSD достаточно давно отказались от подобной памяти, перейдя на чипы, сделанные по более тонким нормам. Да и сама Intel начала перевод на 16-нм память не только своих потребительских, но и серверных накопителей. Однако несмотря на всё это, в Intel SSD 750 устанавливается более старая память, которая предположительно имеет более высокий ресурс.

Серверное происхождение Intel SSD 750 прослеживается ещё и в том, что общий объём флеш-памяти у этого SSD составляет 480 ГиБ, от которых пользователю доступно лишь около 78 процентов. Остальное отводится на подменный фонд, сборку мусора и технологии защиты данных. В Intel SSD 750 реализована традиционная для флагманских накопителей RAID 5-подобная схема на уровне кристаллов MLC NAND, что позволяет успешно восстанавливать данные даже в том случае, когда один из чипов полностью выходит из строя. Кроме того, интеловский SSD обеспечивает полную защиту данных от перебоев питания. На Intel SSD 750 имеется два электролитических конденсатора, и их ёмкости хватает для штатного завершения работы накопителя в автономном режиме.

Kingston HyperX Predator 480 Гбайт

Kingston HyperX Predator – это куда более традиционное по сравнению с Intel SSD 750 решение. Во-первых, работает оно через протокол AHCI, а не NVMe, а во-вторых, для подключения к системе этому SSD требуется более распространённая шина PCI Express 2.0. Всё это делает вариант Kingston несколько медленнее – пиковые скорости при последовательных операциях не превышают 1400 Мбайт/с, а случайные – 160 тысяч IOPS. Но зато HyperX Predator не накладывает никаких специальных требований на систему – он совместим с любыми, в том числе и старыми платформами.

Вместе с этим, накопитель имеет не совсем простую двухкомпонентную конструкцию. Сам SSD представляет собой плату в форм-факторе M.2, которая дополнена PCI Express переходником, позволяющим подключать M.2-накопители через обычные полноразмерные PCIe слоты. Переходник выполнен в виде PCIe x4 карты половинной высоты, задействующей все четыре линии PCI Express. Благодаря такой конструкции Kingston продаёт свой HyperX Predator в двух вариантах: как PCIe SSD для десктопов и как M.2-накопитель для мобильных систем (в этом случае переходник в поставку не включается).



Kingston HyperX Predator базируется на контроллере Marvell Altaplus (88SS9293), который с одной стороны поддерживает четыре линии PCI Express 2.0, а с другой – имеет восемь каналов для подключения флеш-памяти. На данный момент это – самый быстрый серийно выпускаемый SSD-контроллер фирмы Marvell с поддержкой PCI Express. Однако вскоре у Marvell появятся и более быстрые последователи с поддержкой NVMe и PCI Express 3.0, которой у чипа Altaplus нет.



Поскольку сама компания Kingston не производит ни контроллеров, ни памяти, собирая свои SSD из элементной базы, закупаемой у других производителей, нет ничего странного в том, что в основе HyperX Predator PCIe SSD лежит не только сторонний контроллер, но и 128-гигабитные 19-нм чипы MLC NAND компании Toshiba. Такая память имеет невысокую закупочную цену и ставится сейчас во многие продукты Kingston (и других фирм), и в первую очередь в ширпотребные модели.



Однако использование подобной памяти породило парадокс: несмотря на то, что по своему формальному позиционированию Kingston HyperX Predator PCIe SSD – это продукт премиального класса, на него даётся всего лишь трёхлетняя гарантия, а заявленное среднее время наработки на отказ значительно меньше, чем у флагманских SATA SSD других производителей.

Никаких особенных технологий защиты данных в Kingston HyperX Predator также не предусматривается. Но накопитель имеет сравнительно большую скрытую от глаз пользователя область, размер которой составляет 13 процентов от полной ёмкости накопителя. Входящая в неё резервная флеш-память используется для сборки мусора и выравнивания износа, но в первую очередь расходуется на подмену вышедших из строя ячеек памяти.

Остаётся лишь добавить, что в конструкции HyperX Predator не предусмотрено никаких специальных средств для отвода тепла от контроллера. В отличие от большинства прочих высокопроизводительных решений, радиатора у этого накопителя нет. Тем не менее, к перегреву этот SSD совершенно не склонен – его максимальное тепловыделение лишь немного превышает 8 Вт.

OCZ Revodrive 350 480 Гбайт

OCZ Revodrive 350 с полным правом можно назвать одним из самых старых потребительских твердотельных накопителей с интерфейсом PCI Express. Ещё в те времена, когда никто из прочих производителей о выпуске клиентских PCIe SSD даже не задумывался, в модельном ряду компании OCZ имелся RevoDrive 3 (X2) – прообраз современного Revodrive 350. Однако уходящие в прошлое корни PCIe-накопителя OCZ делают его несколько странным предложением на фоне актуальных конкурентов. В то время как большинство производителей высокопроизводительных накопителей для ПК пользуются современными контроллерами с врождённой поддержкой шины PCI Express, в Revodrive 350 реализована очень замысловатая и явно неоптимальная архитектура. Он базируется на двух или четырёх (в зависимости от объёма) контроллерах SandForce SF-2200, которые собраны в RAID-массив нулевого уровня.

Если говорить о принявшей участие в этом тестировании модели OCZ Revodrive 350 объёмом 480 Гбайт, то в её основе, фактически, лежат четыре SATA SSD ёмкостью по 120 Гбайт, каждый из которых базируется на собственном чипе SF-2282 (аналоге широко распространённого SF-2281). Затем эти элементы объединены в единый четырёхкомпонентный RAID 0-массив. Однако для этой цели используется не совсем привычный RAID-контроллер, а фирменный процессор виртуализации (VCA 2.0) OCZ ICT-0262. Впрочем, очень похоже на то, что под этим именем скрывается перелицованная микросхема Marvell 88SE9548, представляющая собой четырёхпортовый RAID-контроллер SAS/SATA 6 Гбит/с с интерфейсом PCI Express 2.0 x8. Но даже если и так, то инженеры OCZ написали для этого контроллера собственную прошивку и драйвер.



Уникальность программной составляющей RevoDrive 350 заключается в том, что в нём реализован не совсем классический RAID 0, а некое его подобие с интерактивной балансировкой нагрузки. Вместо разбиения потока данных на блоки фиксированного размера и последовательной их передачи на разные контроллеры SF-2282, технология VCA 2.0 предполагает анализ и гибкое перераспределение операций ввода-вывода в зависимости от текущей занятости контроллеров флеш-памяти. Поэтому RevoDrive 350 выглядит для пользователя как монолитный твердотельный накопитель. В его BIOS нельзя зайти, а обнаружить, что в недрах этого SSD скрывается RAID-массив, без подробного знакомства с аппаратной начинкой невозможно. Более того, в отличие от обычных RAID-массивов, в RevoDrive 350 поддерживаются все типичные функции SSD: SMART-мониторинг, TRIM и операция Secure Erase.

RevoDrive 350 выпускается в виде плат с интерфейсом PCI Express 2.0 x8. Несмотря на то, что все восемь линий интерфейса реально используются, заявленные показатели производительности заметно ниже их суммарной теоретической пропускной способности. Максимальная скорость последовательных операций ограничивается величиной 1800 Мбайт/с, а производительность произвольных операций не превышает 140 тысяч IOPS.

Стоит отметить, что выполнен OCZ RevoDrive 350 в виде PCI Express x8 платы полной высоты, то есть этот накопитель физически больше, чем все остальные участвующие в тестировании SSD, и поэтому он не может быть установлен в низкопрофильные системы. Лицевая поверхность платы RevoDrive 350 закрыта декоративным металлическим кожухом, по совместительству выступающим радиатором для базовой микросхемы RAID-контроллера. Контроллеры SF-2282 расположены на оборотной стороне платы и какого-либо охлаждения лишены.



Для формирования массива флеш-памяти OCZ воспользовалась микросхемами своей материнской компании – Toshiba. Используются чипы, производимые по 19-нм техпроцессу и имеющие ёмкость 64 Гбит. Общий объём флеш-памяти в RevoDrive 350 480 Гбайт составляет 512 Гбайт, но 13% зарезервировано под внутренние нужды – выравнивание износа и сборку мусора.



Стоит отметить, что архитектура RevoDrive 350 не уникальна. На рынке представлены ещё несколько моделей подобных SSD, работающих по принципу «RAID-массив из SATA SSD на базе контроллеров SandForce». Однако все такие решения, как и рассматриваемый PCIe-накопитель OCZ отличаются неприятным недостатком – их производительность на операциях записи деградирует со временем. Связано это с особенностями внутренних алгоритмов контроллеров SandForce, операция TRIM у которых не возвращает скорость записи до первоначального уровня.



Тот бесспорный факт, что RevoDrive 350 стоит на ступеньку ниже PCI Express накопителей нового поколения подчёркивается и тем, что на этот накопитель даётся всего трёхлетняя гарантия, а его гарантируемый ресурс записи составляет лишь 54 Тбайт – в разы меньше, чем у конкурентов. Более того, несмотря на то, что RevoDrive 350 основывается на том же дизайне, что и серверный Z-Drive 4500, никакой защиты от перепадов напряжения питания он не имеет. Однако всё это не мешает OCZ с присущей ей дерзостью позиционировать RevoDrive 350 в качестве премиального решения уровня Intel SSD 750.

Plextor M6e Black Edition 256 Гбайт

Сразу же необходимо отметить, что накопитель Plextor M6e Black Edition является прямым последователем хорошо известной модели M6e . Похожесть новинки на предшественницу прослеживается почти во всём, если говорить о технической, а не эстетической составляющей. Новый SSD точно так же имеет двухкомпонентную конструкцию, включая в себя собственно накопитель в формате M.2 2280 и переходник, который позволяет устанавливать его в любой обычный слот PCIe x4 (или более скоростной). В его же основе лежит восьмиканальный контроллер Marvell 88SS9183, общающийся с внешним миром по двум линиям PCI Express 2.0. Так же, как и в прошлой модификации, в M6e Black Edition используется MLC-флеш-память компании Toshiba.

И это значит, что несмотря на то, что M6e Black Edition в сборе выглядит как карта половинной высоты с интерфейсом PCI Express x4, на самом деле этот SSD пользуется лишь двумя линиями PCI Express 2.0. Отсюда и не слишком впечатляющие скорости, которое лишь немного превышают быстродействие традиционных SATA SSD. Паспортная производительность на последовательных операциях ограничивается величиной 770 Мбайт/с, а на произвольных – 105 тысяч IOPS. Стоит отметить, что работает Plextor M6e Black Edition по наследственному AHCI-протоколу, и это обеспечивает его широкую совместимость с различными системами.



Несмотря на то, что Plextor M6e Black Edition, как и Kingston HyperX Predator, представляет собой комбинацию из PCI Express переходника и «ядра» в формате M.2-платы, с лицевой стороны определить это невозможно. Весь накопитель спрятался под фигурным чёрным алюминиевым кожухом, в центре которого врезан красный радиатор, который должен отводить тепло от контроллера и чипов памяти. Расчёт дизайнеров понятен: подобное цветовое решение повсеместно применяется в различном игровом железе, поэтому Plextor M6e Black Edition будет гармонично смотреться рядом со многими геймерскими материнскими платами и видеокартами большинства ведущих производителей.



Массив флеш-памяти в Plextor M6e Black Edition набран 19-нм чипами MLC NAND компании Toshiba второго поколения с ёмкостью 64 Гбит. На резерв, используемый для подменного фонда и работы внутренних алгоритмов выравнивания износа и сборки мусора отведено 7 процентов от общего объёма. Всё остальное – доступно пользователю.



Из-за использования достаточно слабого контроллера Marvell 88SS9183 с внешней шиной PCI Express 2.0 x2 накопитель Plextor M6e Black Edition стоит считать достаточно медленным PCIe SSD. Однако это не мешает производителю относить этот продукт в верхнюю ценовую категорию. С одной стороны, он всё-таки быстрее SATA SSD, а с другой – обладает неплохими характеристиками надёжности: имеет продолжительное время наработки на отказ и покрывается пятилетней гарантией. Впрочем, никаких специальных технологий, способных защитить M6e Black Edition от перепадов напряжения или увеличить его ресурс, в нём не реализовано.

Samsung SM951 256 Гбайт

Samsung SM951 – самый неуловимый накопитель в сегодняшнем тестировании. Дело в том, что изначально это – продукт для сборщиков компьютеров, поэтому в розничной продаже он представлен достаточно блекло. Тем не менее, при желании, купить его всё-таки возможно, поэтому отказываться от рассмотрения SM951 мы не стали. Тем более, если судить по характеристикам, это – весьма быстродействующая модель. Она ориентирована на работу по шине PCI Express 3.0 x4, использует протокол AHCI и обещает впечатляющие скорости: до 2150 Мбайт/с на последовательных операциях и до 90 тысяч IOPS – на произвольных. Но самое главное, при всём при этом Samsung SM951 дешевле многих прочих PCIe SSD, так что его поиски в продаже могут иметь под собой вполне конкретное экономическое обоснование.

Ещё одна особенность Samsung SM951 заключается в том, что поставляется он в M.2-виде. Изначально это решение ориентировано на мобильные системы, поэтому никаких переходников для полноразмерных слотов PCIe в комплекте с накопителем не прилагается. Тем не менее, это вряд ли можно считать серьёзным недостатком – большинство флагманских материнских плат имеют на своём борту и интерфейсные слоты M.2. Кроме того, необходимые платы-переходники широко представлены в продаже. Сам же Samsung SM951 представляет собой плату форм-фактора M.2 2280, разъём которой имеет ключ типа M, указывающий на потребность SSD в четырёх линиях PCI Express.



В основе Samsung SM951 лежит исключительно мощный контроллер Samsung UBX, разработанный производителем специально для SSD c интерфейсом PCI Express. Он базируется на трёх ядрах с ARM-архитектурой и в теории способен работать как c AHCI-, так и с NVMe-командами. В рассматриваемом SSD в контроллере включён лишь AHCI-режим. Но NVMe-версию данного контроллера в скором времени можно будет увидеть в новом потребительском SSD, который Samsung должен запустить этой осенью.



Из-за OEM-направленности для рассматриваемого накопителя не сообщается ни сроков гарантии, ни прогнозируемой выносливости. Декларировать эти параметры должны сборщики систем, в которые будет установлен SM951, либо продавцы. Однако следует отметить, что трёхмерная V-NAND, которая сейчас активно продвигается Samsung в потребительских SSD как более быстродействующая и надёжная разновидность флеш-памяти, в SM951 не используется. Вместо этого в нём применена обычная планарная Toggle Mode 2.0 MLC NAND, производимая, предположительно, по 16-нм технологии (некоторые источники предполагают 19-нм техпроцесс). Это означает, что ожидать от SM951 столь же высокой выносливости, как у флагманского SATA-накопителя 850 PRO, явно не следует. По этому параметру SM951 ближе к обычным моделям среднего уровня, к тому же на резервирование в этом SSD отводится только 7 процентов от массива флеш-памяти. Нет в Samsung SM951 и каких-то особых технологий серверного уровня для защиты данных от сбоев питания. Иными словами, акцент в этой модели сделан исключительно на скорости работы, а всё остальное отсечено для снижения стоимости.



Стоит отметить и ещё один момент. При высокой нагрузке Samsung SM951 демонстрирует достаточно серьёзный нагрев, который в конечном итоге может даже приводить ко включению троттлинга. Поэтому в высокопроизводительных системах для SM951 желательно организовать как минимум обдув, а лучше – закрыть его радиатором.

Сравнительные характеристики протестированных SSD


Вопросы совместимости

Как и всякая новая технология, твердотельные накопители с интерфейсом PCI Express пока не могут похвастать 100-процентной беспроблемной работоспособностью с любыми платформами, особенно старыми. Поэтому выбирать подходящий SSD приходится не только исходя из потребительских характеристик, но и с оглядкой на совместимость. И здесь важно иметь в виду два момента.

В первую очередь, разные SSD могут использовать разное количество линий PCI Express и разные поколения этой шины - 2.0 или 3.0. Поэтому перед покупкой PCIe накопителя нужно убедиться в том, что в системе, куда его планируется установить, есть свободный слот с нужной полосой пропускания. Конечно, более скоростные PCIe SSD имеют обратную совместимость с медленными слотами, однако в этом случае приобретение высокоскоростного SSD имеет не слишком много смысла – он попросту не сможет раскрыть весь заложенный в него потенциал.

Наиболее широкой совместимостью в этом смысле обладает Plextor M6e Black Edition – он требует всего две линии PCI Express 2.0, и такой свободный слот наверняка найдётся на практически любой материнской плате. Для Kingston HyperX Predator нужно уже четыре линии PCI Express 2.0: такие слоты PCIe тоже есть на многих платах, но некоторые дешёвые платформы лишними слотами с числом линий PCI Express четыре или более могут и не обладать. Особенно это касается материнок, построенных на чипсетах нижнего уровня, общее число линий у которых может быть урезано до шести. Поэтому перед приобретением Kingston HyperX Predator обязательно проверьте, что в системе есть свободный слот с четырьмя или большим числом линий PCI Express.

OCZ Revodrive 350 задаёт задачку посложнее – ему уже требуется восемь линий PCI Express. Такие слоты обычно реализуются уже силами не чипсета, а процессора. Поэтому оптимальным местом применения такого накопителя являются LGA 2011/2011-3-платформы, где PCI Express контроллер процессора располагает избыточным числом линий, позволяющим обслуживать более чем одну видеокарту. В системах же с LGA 1155/1150/1151-процессорами OCZ Revodrive 350 будет уместен лишь в том случае, если используется встроенная в CPU графика. В противном случае в пользу твердотельного накопителя придётся отнять половину линий у GPU, переведя его в режим PCI Express x8.

Intel SSD 750 и Samsung SM951 в чём-то похожи на OCZ Revodrive 350: их тоже предпочтительнее использовать в слотах PCI Express, питаемых от процессора. Однако причина тут не в количестве линий – им требуется всего четыре линии PCI Express, а в поколении этого интерфейса: оба эти накопителя способны задействовать увеличенную пропускную способность PCI Express 3.0. Однако есть и исключение: новейшие интеловские наборы системной логики сотой серии, предназначенные для процессоров семейства Skylake, получили поддержку PCI Express 3.0, поэтому в новейших LGA 1151-платах их без зазрений совести можно устанавливать и в чипсетные PCIe-слоты, к которым подведено как минимум четыре линии.

У проблемы совместимости есть и вторая часть. Ко всем ограничениям, связанным с пропускной способностью различных вариаций слотов PCI Express добавляются ещё и ограничения, связанные с используемыми протоколами. Наиболее беспроблемными в этом смысле являются SSD, которые работают через AHCI. Благодаря тому, что в них эмулируется поведение обычного SATA-контроллера, они могут работать с любыми, даже старыми, платформами: они видятся в BIOS любых материнских плат, могут быть загрузочными дисками, а для их работы в операционной системе не требуется и никаких дополнительных драйверов. Иными словами, Kingston HyperX Predator и Plextor M6e Black Edition – это два самых беспроблемных PCIe SSD.

А что же другая пара AHCI-накопителей? С ними ситуация немного сложнее. OCZ Revodrive 350 работает в операционной системе через собственный драйвер, но даже несмотря на это проблем с тем, чтобы сделать этот накопитель загрузочным, нет никаких. Хуже дело обстоит с Samsung SM951. Хотя этот SSD и общается с системой посредством наследственного протокола AHCI, он лишён собственного BIOS, и поэтому его инициализацию должен проводить BIOS материнской платы. К сожалению, поддержка данного SSD есть далеко не во всех материнках, в особенности старых. Поэтому с полной уверенностью можно говорить лишь о его совместимости с платами на базе последних интеловских чипсетов девяностой и сотой серии. В остальных случаях он может попросту не видеться материнской платой. Конечно, это не помешает использовать Samsung SM951 в операционной системе, где его легко инициализирует AHCI-драйвер, но в таком случае о возможности загрузки со скоростного SSD придётся забыть.

Но самые большие неудобства способен причинить Intel SSD 750, работающий через новый интерфейс NVMe. Драйверы, которые необходимы для поддержки твердотельных накопителей, работающих по этому протоколу, присутствуют только в новейших операционных системах. Так, в Linux поддержка NVMe появилась в версии ядра 3.1; «врождённый» драйвер NVMe имеется в микрософтовских системах, начиная с Windows 8.1 и Windows Server 2012 R2; а в OS X совместимость с NVMe-накопителями была добавлена в версии 10.10.3. Кроме того, NVMe SSD поддерживается далеко не всеми материнскими платами. Для того чтобы такие накопители можно было использовать в качестве загрузочных, BIOS материнской платы должен тоже располагать соответствующим драйвером. Однако производители встроили необходимую функциональность лишь в самые последние версии прошивок, выпущенные для наиболее свежих моделей материнок. Поэтому поддержка загрузки операционной системы с NVMe-накопителей есть лишь на самых современных платах для энтузиастов, основанных на наборах логики Intel Z97, Z170 и X99. В более старых и дешёвых платформах пользователи смогут воспользоваться NVMe SSD лишь как вторыми дисками в ограниченном наборе ОС.

Несмотря на то, что мы постарались описать все возможные комбинации платформ и PCI Express накопителей, основной вывод из сказанного таков: совместимость PCIe SSD с материнскими платами – вопрос далеко не такой очевидный, как в случае с SATA SSD. Поэтому перед приобретением любого высокоскоростного твердотельного накопителя, работающего через PCI Express, обязательно уточните его совместимость с конкретной материнской платой на сайте производителя.

Тестовая конфигурация, инструментарий и методика тестирования

Тестирование проводится в операционной системе Microsoft Windows 8.1 Professional x64 with Update, корректно распознающей и обслуживающей современные твердотельные накопители. Это значит, что в процессе прохождения тестов, как и при обычном повседневном использовании SSD, команда TRIM поддерживается и активно задействуется. Измерение производительности выполняется с накопителями, находящимися в «использованном» состоянии, которое достигается их предварительным заполнением данными. Перед каждым тестом накопители очищаются и обслуживаются с помощью команды TRIM. Между отдельными тестами выдерживается 15-минутная пауза, отведённая для корректной отработки технологии сборки мусора. Во всех тестах, если не указано иное, используются рандомизированные несжимаемые данные.

Используемые приложения и тесты:

Iometer 1.1.0

Измерение скорости последовательного чтения и записи данных блоками по 256 Кбайт (наиболее типичный размер блока при последовательных операциях в десктопных задачах). Оценка скоростей выполняется в течение минуты, после чего вычисляется средний показатель.
Измерение скорости случайного чтения и записи блоками размером 4 Кбайт (такой размер блока используется в подавляющем большинстве реальных операций). Тест проводится дважды - без очереди запросов и с очередью запросов глубиной 4 команды (типичной для десктопных приложений, активно работающих с разветвлённой файловой системой). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
Установление зависимости скоростей случайного чтения и записи при работе накопителя с 4-килобайтными блоками от глубины очереди запросов (в пределах от одной до 32 команд). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
Установление зависимости скоростей случайного чтения и записи при работе накопителя с блоками разного размера. Используются блоки объёмом от 512 байт до 256 Кбайт. Глубина очереди запросов в течение теста составляет 4 команды. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
Измерение производительности при смешанной многопоточной нагрузке и установление её зависимости от соотношения между операциями чтения и записи. Тест проводится дважды: для последовательных чтений и записей блоками объёмом 128 Кбайт, выполняемыми в два независимых потока и для случайных операций с блоками объёмом 4 Кбайт, которые выполняются в четыре потока. В обоих случаях соотношение между операциями чтения и записи варьируется с шагом 20 процентов. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
Исследование падения производительности SSD при обработке непрерывного потока операций случайной записи. Используются блоки размером 4 Кбайт и глубина очереди 32 команды. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Продолжительность теста составляет два часа, измерения моментальной скорости проводятся ежесекундно. По окончании теста дополнительно проверяется способность накопителя восстанавливать свою производительность до первоначальных величин за счёт работы технологии сборки мусора и после отработки команды TRIM.

CrystalDiskMark 5.0.2
Синтетический тест, выдающий типовые показатели производительности твердотельных накопителей, измеренные на 1-гигабайтной области диска «поверх» файловой системы. Из всего набора параметров, которые можно оценить с помощью этой утилиты, мы обращаем внимание на скорость последовательного чтения и записи, а также на производительность произвольных чтения и записи 4-килобайтными блоками без очереди запросов и с очередью глубиной 32 команды.
PCMark 8 2.0
Тест, основанный на эмулировании реальной дисковой нагрузки, которая характерна для различных популярных приложений. На тестируемом накопителе создаётся единственный раздел в файловой системе NTFS на весь доступный объём, и в PCMark 8 проводится тест Secondary Storage. В качестве результатов теста учитывается как итоговая производительность, так и скорость выполнения отдельных тестовых трасс, сформированных различными приложениями.
Тесты копирования файлов
В этом тесте измеряется скорость копирования директорий с файлами разного типа, а также скорость архивации и разархивации файлов внутри накопителя. Для копирования используется стандартное средство Windows – утилита Robocopy, при архивации и разархивации – архиватор 7-zip версии 9.22 beta. В тестах участвует три набора файлов: ISO – набор, включающий несколько образов дисков c дистрибутивами программ; Program – набор, представляющий собой предустановленный программный пакет; Work – набор рабочих файлов, включающий офисные документы, фотографии и иллюстрации, pdf-файлы и мультимедийный контент. Каждый из наборов имеет общий объём файлов 8 Гбайт.

В качестве тестовой платформы используется компьютер с материнской платой ASUS Z97-Pro, процессором Core i5-4690K со встроенным графическим ядром Intel HD Graphics 4600 и 16 Гбайт DDR3-2133 SDRAM. Диски с SATA-интерфейсом подключается к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI. Накопители с интерфейсом PCI Express устанавливаются в первый полноскоростной слот PCI Express 3.0 x16. Используется драйверы Intel Rapid Storage Technology (RST) 13.5.2.1000 и Intel Windows NVMe driver 1.2.0.1002.

Объём и скорость передачи данных в бенчмарках указываются в бинарных единицах (1 Кбайт = 1024 байт).

Помимо пяти главных героев этого теста – клиентских твердотельных накопителей с интерфейсом PCI Express, мы добавили к ним в компанию и самый быстрый SATA SSD – Samsung 850 PRO.

В результате, список протестированных моделей приобрёл следующий вид:

Intel SSD 750 400 Гбайт (SSDPEDMW400G4, прошивка 8EV10135);
Kingston HyperX Predator PCIe 480 Гбайт (SHPM2280P2H/480G, прошивка OC34L5TA);
OCZ RevoDrive 350 480 Гбайт (RVD350-FHPX28-480G, прошивка 2.50);
Plextor M6e Black Edition 256 Гбайт (PX-256M6e-BK, прошивка 1.05);
Samsung 850 Pro 256 Гбайт (MZ-7KE256, прошивка EXM01B6Q);
Samsung SM951 256 Гбайт (MZHPV256HDGL-00000, прошивка BXW2500Q).

Производительность

Последовательные операции чтения и записи






Новое поколение твердотельных накопителей, переведённых на шину PCI Express, должно в первую очередь выделяться высокими скоростями последовательного чтения и записи. И именно это мы видим на графике. Все PCIe SSD оказываются производительнее лучшего SATA SSD – Samsung 850 PRO. Однако даже такая простая нагрузка как последовательное чтение и запись показывает огромные различия между SSD различных производителей. Причём, вариант используемой шины PCI Express не имеет определяющего значения. Лучшую производительность здесь может выдать PCI Express 3.0 x4 накопитель Samsung SM951, а на втором месте – Kingston HyperX Predator, работающий через PCI Express 2.0 x4. Прогрессивный же NVMe-накопитель Intel SSD 750 оказался лишь на третьем месте.

Случайные операции чтения






Если же говорить о случайном чтении, то как видно из диаграмм, PCIe SSD не особенно отличаются по скорости от традиционных SATA SSD. Причём, это касается не только AHCI-накопителей, но и того продукта, который работает с протоком NVMe. Фактически лучшую, чем Samsung 850 PRO производительность при случайных операциях чтения на небольших очередях запросов могут продемонстрировать лишь три участника этого теста: Samsung SM951, Intel SSD 750 и Kingston HyperX Predator.

Несмотря на то, что операции с глубокой очередью запросов для персональных компьютеров не свойственны, мы всё же посмотрим, как зависит производительность рассматриваемого SSD от глубины очереди запросов при чтении 4-килобайтных блоков.



По графику хорошо видно, насколько решения, работающие через PCI Express 3.0 x4, могут превосходить все другие SSD. Кривые, соответствующие Samsung SM951 и Intel SSD 750 находятся существенно выше графиков других накопителей. По приведённой диаграмме можно сделать и ещё одно заключение: OCZ RevoDrive 350 – это позорно медленный твердотельный накопитель. На случайных операциях чтения он где-то вдвое отстаёт от SATA SSD, что обусловлено его RAID-архитектурой и использованием устаревших контроллеров SandForce второго поколения.

В дополнение к этому предлагаем посмотреть, как зависит скорость случайного чтения от размера блока данных:



Здесь картина немного иная. С ростом размера блоков операции начинают походить на последовательные, поэтому роль начинает играть не только архитектура и мощность контроллера SSD, но и пропускная способность используемой ими шины. На блоках больших размеров лучшую производительность обеспечивают Samsung SM951, Intel SSD 750 и Kingston HyperX Predator.

Случайные операции записи






Где-то преимущества интерфейса NVMe, обеспечивающего низкие латентности, и контроллера Intel SSD 750 с высоким уровнем параллелизма должны были проявиться. К тому же имеющийся в этом SSD вместительный DRAM-буфер позволяет организовать очень эффективное кеширование данных. И в результате Intel SSD 750 выдаёт непревзойдённую скорость произвольной записи даже в том случае, если очередь запросов имеет минимальную глубину.

Более явно увидеть, что происходит с производительностью случайной записи при увеличении глубины очереди запросов, можно на следующем графике, показывающем зависимость скорости произвольной записи 4-килобайтными блоками от глубины очереди запросов:



Масштабирование производительности Intel SSD 750 происходит до тех пор, пока глубина очереди не достигнет 8 команд. Это – типичное поведение для потребительских SSD. Однако новинка Intel отличается тем, что её скорости при случайной записи значительно выше, чем у любых других твердотельных накопителей, в том числе и у быстрейших PCIe-моделей вроде Samsung SM951 или Kingston HyperX Predator. Иными словами, при случайной нагрузке в виде записи данных Intel SSD 750 предлагает принципиально лучшую производительность, чем любые другие SSD. Иными словами, переход на использование интерфейса NVMe позволяет прокачать скорость случайной записи. И это – безусловно важная характеристика, но в первую очередь для серверных накопителей. Собственно, Intel SSD 750 как раз и является близким родственником таких моделей как Intel DC P3500, P3600 и P3700.

Следующий график отражает зависимость производительности случайных записей от размера блока данных.



По мере увеличения размеров блоков Intel SSD 750 теряет своё безоговорочное преимущество. Примерно такую же производительность начинают выдавать Samsung SM951 и Kingston HyperX Predator.


По мере удешевления твердотельные накопители перестают использоваться в качестве исключительно системных и становятся обычными рабочими дисками. В таких ситуациях на SSD поступает не только рафинированная нагрузка в виде записи или чтения, но и смешанные запросы, когда операции чтения и записи инициируются разными приложениями и должны обрабатываться одновременно. Однако работа в дуплексном режиме для современных контроллеров SSD остаётся существенной проблемой. При смешивании операций чтения и записи в одной очереди скорость большинства твердотельных накопителей потребительского уровня заметно проседает. Это стало поводом для проведения отдельного исследования, в рамках которого мы проверяем, как работают SSD при необходимости обработки последовательных операций, поступающих вперемежку. Следующая пара диаграмм демонстрирует наиболее характерный для десктопов случай, когда соотношение количества операций чтения и записи составляет 4 к 1.






При последовательной смешанной нагрузке с преобладающими операциями чтения, что характерно для обычных персональных компьютеров, наилучшую производительность выдают Samsung SM951 и Kingston HyperX Predator. Случайная смешанная нагрузка оказывается более тяжёлым испытанием для SSD и оставляет в лидерах Samsung SM951, но на второе место выдвигает Intel SSD 750. При этом Plextor M6e Black Edition, Kingston HyperX Predator и OCZ RevoDrive 350 вообще оказываются заметно хуже обычного SATA SSD.

Следующая пара графиков даёт более развёрнутую картину производительности при смешанной нагрузке, показывая зависимость скорости SSD от того, в каком соотношении приходят на него операции чтения и записи.






Всё сказанное выше хорошо подтверждается и на приведённых графиках. При смешанной нагрузке с последовательными операциями лучшее быстродействие показывает Samsung SM951, который чувствует себя как рыба в воде при любой работе с последовательными данными. При произвольных смешанных операциях ситуация немного отличается. Оба накопителя компании Samsung, и работающий через PCI Express 3.0 x4 SM951, и обычный SATA 850 PRO, в этом тесте выдают очень хорошие результаты, обходя по производительности почти все остальные SSD. Противостоять им в отдельных случаях может лишь Intel SSD 750, который благодаря системе команд NVMe отлично оптимизирован под работу со случайными записями. И когда в потоке смешанных операций доля записей возрастает до 80 процентов или выше, он резко вырывается вперёд.

Результаты в CrystalDiskMark

CrystalDiskMark - это популярное и простое тестовое приложение, работающее «поверх» файловой системы, которое позволяет получать результаты, легко повторяемые обычными пользователями. Полученные в нём показатели производительности должны дополнить подробные графики, построенные нами на основании тестов в IOMeter.












Приведённые четыре диаграммы представляют лишь теоретическую ценность, показывая пиковую производительность, не достижимую в типичных клиентских задачах. Глубины очереди запросов в 32 команды в персональных компьютерах никогда не бывает, но в специальных тестах она позволяет получить максимальные показатели производительности. И в этом случае лидирующее быстродействие с большим отрывом выдаёт Intel SSD 750, который имеет архитектуру, унаследованную от серверных накопителей, где большая глубина очереди запросов – вполне в порядке вещей.












А вот эти четыре диаграммы представляют уже практический интерес – на них отображена производительность при нагрузке, которая характерна для персональных компьютеров. И здесь лучшую производительность выдаёт уже Samsung SM951, который отстаёт от Intel SSD 750 лишь при случайных 4-килобайтных записях.

PCMark 8 2.0, реальные сценарии использования

Тестовый пакет Futuremark PCMark 8 2.0 интересен тем, что он имеет не синтетическую природу, а напротив - основывается на том, как работают реальные приложения. В процессе его прохождения воспроизводятся настоящие сценарии-трассы задействования диска в распространённых десктопных задачах, и замеряется скорость их выполнения. Текущая версия этого теста моделирует нагрузку, которая взята из реальных игровых приложений Battlefield 3 и World of Warcraft и программных пакетов компаний Abobe и Microsoft: After Effects, Illustrator, InDesign, Photoshop, Excel, PowerPoint и Word. Итоговый результат исчисляется в виде усреднённой скорости, которую показывают накопители при прохождении тестовых трасс.



Тест PCMark 8 2.0, оценивающий производительность систем хранения данных в реальных приложениях, недвусмысленно говорит нам о том, что существует лишь два PCIe-накопителя, скорость которых принципиально выше, чем у привычных моделей с SATA-интерфейсом. Это - Samsung SM951 и Intel SSD 750, которые побеждают и во многих других тестах. Другие же PCIe SSD, например, Plextor M6e Black Edition и Kingston HyperX Predator отстают от лидеров более чем в полтора раза. Ну а OCZ ReveDrive 350 демонстрирует откровенно плохое быстродействие. Он медленнее лучших PCIe SSD более чем вдвое и при этом уступает по скорости даже Samsung 850 PRO, который работает через SATA-интерфейс.

Интегральный результат PCMark 8 нужно дополнить и показателями производительности, выдаваемыми флеш-дисками при прохождении отдельных тестовых трасс, которые моделируют различные варианты реальной нагрузки. Дело в том, что при разной нагрузке флеш-приводы зачастую ведут себя немного по-разному.






























О каком бы приложении ни шла речь, в любом случае наивысшую производительность выдаёт один из SSD с интерфейсом PCI Express 3.0 x4: либо Samsung SM951, либо Intel SSD 750. Что интересно, остальные PCIe SSD в ряде случаев вообще выдают скорость лишь на уровне SATA SSD. Фактически, преимущество тех же Kingston HyperX Predator и Plextor M6e Black Edition над Samsung 850 PRO можно увидеть лишь в Adobe Photoshop, Battlefield 3 и Microsoft Word.

Копирование файлов

Имея в виду, что твердотельные накопители внедряются в персональные компьютеры всё шире и шире, мы решили добавить в нашу методику измерение производительности при обычных файловых операциях – при копировании и работе с архиваторами – которые выполняются «внутри» накопителя. Это – типичная дисковая активность, возникающая в том случае, если SSD исполняет роль не системного накопителя, а обычного диска.









В тестах копирования в лидерах оказываются всё те же Samsung SM951 и Intel SSD 750. Однако если речь идёт о больших последовательных файлах, то конкуренцию им может составить Kingston HyperX Predator. Надо сказать, что при простом копировании почти все PCIe SSD оказываются быстрее Samsung 850 PRO. Исключение лишь одно – Plextor M6e Black Edition. А OCZ RevoDrive 350, который в остальных тестах стабильно оказывался в положении безнадёжного аутсайдера, неожиданно обходит не только SATA SSD, но и самого медленного PCIe SSD.

Вторая группа тестов проведена при архивации и разархивации директории с рабочими файлами. Принципиальное отличие этого случая заключается в том, что половина операций выполняется с разрозненными файлами, а вторая половина – с одним большим файлом архива.






Похожая ситуация и при работе с архивами. Отличие лишь в том, что тут Samsung SM951 удаётся уверенно оторваться от всех конкурентов.

Работа TRIM и фоновой сборки мусора

Испытывая различные твердотельные накопители, мы всегда проверяем то, как они отрабатывают команду TRIM и способны ли они собирать мусор и восстанавливать свою производительность без поддержки со стороны операционной системы, то есть в такой ситуации, когда команда TRIM не передаётся. Такое тестирование было проведено и в этот раз. Схема этого испытания стандартна: после создания длительной непрерывной нагрузки на запись данных, которая приводит к деградации скорости записи, мы отключаем поддержку TRIM и выжидаем 15 минут, в течение которых SSD может попытаться самостоятельно восстановиться за счёт собственного алгоритма сборки мусора, но без помощи со стороны операционной системы, и замеряем скорость. Затем на накопитель принудительно подаётся команда TRIM - и после небольшой паузы скорость измеряется ещё раз.

Результаты такого тестирования приведены в следующей таблице, где для каждой протестированной модели указано, реагирует ли она на TRIM очисткой неиспользуемой части флеш-памяти и может ли она заготавливать чистые страницы флеш-памяти под будущие операции, если команда TRIM на неё не подаётся. Для накопителей, которые оказались способны осуществлять сборку мусора и без команды TRIM, мы также указали тот объём флеш-памяти, который был самостоятельно освобождён контроллером SSD под будущие операции. Для случая эксплуатации накопителя в среде без поддержки TRIM это - как раз тот объём данных, который можно будет сохранить на накопитель с высокой первоначальной скоростью после простоя.



Несмотря на то, что качественная поддержка команды TRIM стала отраслевым стандартом, некоторые производители считают допустимым продавать накопители, в которых эта команда не отрабатывается в полной мере. Такой отрицательный пример демонстрирует OCZ Revodrive 350. Формально TRIM он понимает, и даже что-то пытается сделать при получении этой команды, но о полном возвращении скорости записи к первоначальным значениям говорить не приходится. И в этом нет ничего странного: в основе Revodrive 350 лежат контроллеры SandForce, которые отличаются своей необратимой деградаций производительности. Соответственно присутствует она и в Revodrive 350.

Все же остальные PCIe SSD работают с TRIM как и их SATA-собратья. То есть, идеально: в операционных системах, которые подают эту команду на накопители, производительность остаётся на неизменно высоком уровне.

Однако мы хотим большего – качественный накопитель должен уметь проводить сборку мусора и без подачи команды TRIM. И здесь выделяется Plextor M6e Black Edition – накопитель, который способен самостоятельно освободить под предстоящие операции значительно больше флеш-памяти, чем его конкуренты. Хотя, конечно, в той или иной мере автономная сборка мусора работает у всех протестированных нами SSD, за исключением Samsung SM951. Иными словами, при обычном использовании в современных средах производительность Samsung SM951 деградировать не будет, однако в тех случаях, когда TRIM не поддерживается, применять этот SSD не рекомендуется.

Выводы

Начать подводить итоги, наверное, следует с констатации факта, что потребительские SSD с интерфейсом PCI Express – это уже не экзотика и не какие-то экспериментальные продукты, а целый рыночный сегмент, в котором играют наиболее быстродействующие твердотельные накопители для энтузиастов. Естественно, это же и означает, что с PCIe SSD уже давно нет никаких проблем: они поддерживают все функции, что есть в SATA SSD, но при этом более производительны и порой обладают некоторыми новыми интересными технологиями.

В то же время рынок клиентских PCIe SSD не столь переполнен, и войти в когорту производителей таких твердотельных накопителей пока смогли лишь компании, обладающие высоким инженерным потенциалом. Это связано с тем, что у независимых разработчиков массовых контроллеров SSD пока нет решений-конструкторов, позволяющих приступить к выпуску PCIe-накопителей с минимальными инженерными усилиями. Поэтому каждый из представленных в настоящее время на полках магазинов PCIe SSD по-своему самобытен и уникален.

В этом тестировании нам удалось собрать вместе пять самых популярных и наиболее распространённых PCIe SSD, ориентированных на эксплуатацию в составе персональных компьютеров. И по результатам знакомства с ними становится понятно, что покупателям, желающим перейти на пользование твердотельными накопителями с прогрессивным интерфейсом, никакие серьёзные муки выбора пока не грозят. В большинстве случаев выбор будет однозначным, настолько сильно отличаются по своим потребительским качествам протестированные модели.

В целом, наиболее привлекательной моделью PCIe SSD оказался Samsung SM951 . Это – блестящее решение от одного из лидеров рынка, работающее через шину PCI Express 3.0 x4, которое не только оказалось способно обеспечить наивысшую производительность в типичных общеупотребительных нагрузках, но и к тому же заметно дешевле всех остальных PCIe-накопителей.

Однако Samsung SM951 всё же не идеален. Во-первых, в нём нет никаких специальных технологий, ориентированных на повышение надёжности, а в продуктах премиального уровня их всё-таки хотелось бы иметь. Во-вторых, этот SSD достаточно тяжело найти в продаже в России – по официальным каналам он в нашу страну не поставляется. К счастью, мы можем предложить обратить внимание и на неплохую альтернативу – Intel SSD 750 . Этот SSD тоже работает через PCI Express 3.0 x4, и всего лишь немного отстаёт от Samsung SM951. Зато он является прямым родственником серверных моделей, а потому имеет высокую надёжность и работает по протоколу NVMe, что позволяет ему демонстрировать непревзойдённую скорость на операциях случайной записи.

В принципе, на фоне Samsung SM951 и Intel SSD 750 остальные SSD с интерфейсом PCIe смотрятся достаточно слабо. Однако всё-таки существуют ситуации, когда предпочесть им придётся какую-то другую модель PCIe SSD. Дело в том, что передовые накопители Samsung и Intel совместимы лишь с современными материнскими платами, построенными на интеловских чипсетах девяностой или сотой серии. В более же старых системах они способны работать лишь в роли «второго диска», а загрузка с них операционной системы окажется невозможной. Поэтому для модернизации платформ прошлых поколений ни Samsung SM951, ни Intel SSD 750 не подойдут, и выбор придётся остановить на накопителе Kingston HyperX Predator , который с одной стороны может обеспечить неплохую производительность, а с другой – гарантированно не имеет никаких проблем совместимости со старыми платформами.

Возможности и преимущества

Унифицированная архитектура NVIDIA®

Полностью унифицированное графическое ядро динамически распределяет работу по обработке геометрии, вершинных шейдеров, физики или закраски пикселей, обеспечивая превосходную графическую мощь.

Архитектура параллельных вычислений NVIDIA CUDA™ 1

Технология CUDA раскрывает мощь ядер графического процессора и ускоряет самые требовательные системные задачи, например, перекодирование видео, обеспечивая невероятный прирост производительности по сравнению с традиционными CPU.

Поддержка DirectCompute

Полная поддержка DirectCompute, API для вычислений на GPU от Microsoft

Поддержка OpenCL

Поддержка OpenCL

Поддержка Microsoft Windows 7

Windows 7 – операционная система нового поколения, которая будет отмечена существенным усовершенствованием способа, используемого операционной системой для раскрытия преимуществ графических процессоров, что обеспечит небывалый визуальный опыт. Используя эти преимущества для графики и вычислений, Windows 7 сделает современные ПК не только более интерактивными и привлекательными в плане графики, но и полностью удовлетворит требования пользователей в скорости и производительности.

Унифицированная драйверная архитектура NVIDIA® GeForce® (UDA)

Предлагает проверенный уровень совместимости, надёжности и стабильности в работе с широким диапазоном игр и приложений. Драйверы GeForce обеспечивают беспрецедентную работу каждому пользователю и поддерживают высокую производительность и обновление возможностей на протяжении всего срока службы графических процессоров GeForce.

Технология GigaThread™

Массивная многопоточная архитектура поддерживает тысячи независимых параллельных потоков, обеспечивая невероятную вычислительную силу и работу усовершенствованных программ закраски следующего поколения.

Движок NVIDIA® Lumenex™

Движок NVIDIA® Lumenex™

Технология 16

кратного сглаживания

Битное освещение с широким динамическим диапазоном (HDR) с плавающей точкой

Удвоенная по сравнению с предыдущим поколением точность, обеспечивающая невероятно реалистичные эффекты освещения, теперь с поддержкой сглаживания.



Технология NVIDIA® PureVideo® HD 2

Это сочетание ускорения декодирования видео высокой четкости и постобработки, обеспечивающее беспрецедентную чистоту изображения, плавное видео, правильные цвета и точное масштабирование изображения для фильмов и видео.

Аппаратное ускорение декодирования

Обеспечивает ультраплавное воспроизведение фильмов высокой и стандартной четкости H.264, VC-1, WMV, DivX, MPEG-2 и MPEG-4 без необходимости использования двух или четырёх ядерного центрального процессора.

Двухпоточное аппаратное ускорение

Поддержка режима «картинка-в-картинке» для интерактивного просмотра фильмов Blu-ray и HD DVD.

Динамическое повышение контраста и растягивание цвета

Постобработка и оптимизация фильмов высокой четкости сцена за сценой для поразительной чистоты изображения.

Еще более лучшая устойчивость к ошибкам

Исправляйте ошибки и восстанавливайте потери в широковещательном контенте для обеспечения четкого качественного воспроизведения.

Продвинутый пространственно-временной деинтерлейсинг

Повышает резкость чересстрочного контента в HD и стандартном разрешении на прогрессивных дисплеях, обеспечивая четкое, ясное изображение, сравнимое с возможностями продвинутых домашних кинотеатров.

Высококачественное масштабирование

Повышение разрешения фильмов до HDTV. При этом сохраняется четкость и ясность изображения. Также понижение разрешения видео, включая HD, с сохранением деталей.

Обратное телекино (3:2 & 2:2 коррекция)

Восстановление оригинальных изображений из фильмов, конвертированных в видео (DVDs, 1080i HD контент), более точное воспроизведение видео и превосходное качество изображения.

Коррекция неудачного редактирования

При редактировании видео внесенные поправки могут нарушить нормальную развертку 3:2 или 2:2. Технология PureVideo использует продвинутые техники обработки для обнаружения неудачных правок, восстановления исходного контента и визуализации превосходных деталей изображения кадр за кадром, обеспечивая плавное натуральное видео.

Подавление шумов

Повышение качества видео благодаря удалению нежелательных артефактов.

Улучшение краев объектов

Более четкие изображения в видео благодаря повышению контраста вокруг линий и объектов.

Поддержка Dual-link HDCP 3

Удовлетворение спецификациям по управлению защитой вывода (HDCP) и безопасности для формата Blu-ray для воспроизведения защищенного видео контента на HDCP совместимых мониторах.

Поддержка Dual Dual-link DVI

Работает с самыми большими в индустрии плоскопанельными дисплеями с самым высоким разрешением (до 2560x1600 пикселей) и поддержкой защиты широкополосных цифровых данных (HDCP).

Поддержка HDMI 1.3a

Полностью интегрированная поддержка HDMI 1.3a с поддержкой xvYCC, глубокого цвета и окружающего звука 7.1

Поддержка PCI Express 2.0

Создано для новой архитектуры шины PCI Express 2.0 для высочайших скоростей передачи данных в самых требовательных к полосе пропускания играх и 3D приложениях с поддержкой обратной совместимости с современными PCI Express материнскими платами.

Поддержка Microsoft® DirectX® 10.1

DirectX 10.1 с поддержкой Шейдерной Модели 4.1.

Оптимизация и поддержка OpenGL® 3.0

Гарантирует первосортную совместимость и производительность для OpenGL приложений.

Спецификация

Поддерживаемые дисплеи:
Максимальное разрешение цифрового монитора 2560x1600
Максимальное VGA разрешение 2048x1536
Стандартные разъемы монитора DVI, VGA, HDMI
Поддержка нескольких мониторов
HDCP
HDMI как заглушка (DVI-HDMI или DP-HDMI)
Аудио вход для HDMI внутренний
Стандартные размеры видеокарты:
Высота 4.376 inches (111 mm)
Длина 6.6 inches (168mm)
Ширина одинарный слот
Температура и мощность:
Максимальная температура GPU (в C)
Максимальная мощность видеокарты (Вт)
Минимальные системные требования по питанию (Вт)

2.2.5 Жёсткий диск.

Накопитель на жёстких магнитных дисках или НЖМД - устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Используемые интерфейсы: ATA (IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, USB, SDIO и Fibre Channel.

УСТРОЙСТВО

Жёсткий диск состоит из гермозоны и блока электроники (Рис.14).

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа, марганца и других металлов.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (3600, 4200, 5400, 5900, 7200, 9600, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор - постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используются гидродинамические подшипники.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки на подвижном блоке головок

.Блок электроники . в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood) - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом. Рисунок 14.

Схема устройства НЖМД.(рис14)

Так как системная плата поддерживает интерфейс Serial ATA, был выбран жёсткий диск ST3160316AS ёмкостью 160 Гб, скоростью вращения шпинделя 7200 обор./мин., ёмкостью буфера памяти 8 Мб. (Рисунок. 15). Ёмкости 160Гб достаточно для работы в учебной лаборатории.


Рисунок 15 HDD ST3160316AS

2.2.6 Устройство оптического хранения данных.

Оптический привод - электрическое устройство для считывания и воз-

можно записи информации с оптических носителей (CD-ROM, DVD-ROM).

Существуют следующие типы приводов:

· привод CD-ROM (CD-привод);

· привод DVD-ROM (DVD-привод);

· привод HD DVD;

· привод BD-ROM;

· привод GD-ROM;

Рабочие станции учеников не оборудованы оптическими приводами, а для преподавателей был выбран CD/DVD – привод NEC DV-5800D.

2.2.7 Корпус и блок питания

Блок питания (БП) - устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменный ток сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданный постоянный ток.

Классическим блоком питания является трансформаторный БП . В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на транс- форматор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки).

В настоящее время используется в основном два стандарта корпусов. Это АТХ и ВТХ, так они являются наиболее перспективными на сегодняшний день.

Главная особенность стандарта АТХ (Рис.17) состоит в том, что вентилятор расположен на стенке корпуса блока питания, которая обращена внутрь компьютера, и поток воздуха прогоняется вдоль системной платы, поступая извне. Поток воздуха в блоке АТХ направляется на компоненты платы, которые выделяют больше всего тепла (процессор, модули памяти и платы расширения).

Во всех современных процессорах устанавливается активный теплоотвод, который представляет собой маленький вентилятор, установленный на процессоре для его охлаждения. Блок питания модели АТХ берет воздух извне и создает в корпусе избыточное давление, тогда как в корпусах других систем давление понижено. Направление воздушного потока в обратную сторону позволило значительно улучшить охлаждение процессора и других компонентов системы. При таком направлении воздуха компоненты внутри системного блока меньше подвержены пыли.

Рисунок 16. Корпус ATX.

На ряду с ATX существует стандарт ВТХ (Рис.18). Внешне системная плата ВТХ выглядит почти как зеркальное отражение АТХ - платы благодаря чему все платы PCI и PCI Express, в том числе графические адаптеры, оказываются установленными микросхемами вверх, что уже само по себе улучшает ситуацию с охлаждением.

Но еще более важное достоинство ВТХ - новая схема охлаждения процессора: теперь он расположен на переднем краю платы, причем развернут под 45° к нему. При сборке компьютера на процессор устанавливается не привычное охлаждающее устройство, а так называемый модуль охлаждения (Thermal Module), состоящий из вентилятора, радиатора и объединяющего их в единое целое короба. В результате радиатор процессора обдувается холодным воздухом, забираемым вентилятором от наружной стенки компьютера.

Разворот процессора на 45° решает сразу две проблемы: во-первых, уменьшается сопротивление процессорного гнезда набегающему потоку воздуха; во-вторых перед гнездом по его бокам располагаются элементы VRM, которые при такой схеме также охлаждаются непосредственно потоком холодного забортного воздуха.

Системная плата располагается не у нижней кромки охлаждающего модуля, а чуть выше, благодаря чему часть воздушного потока проходит под платой, в первую очередь транзисторов VRM.

Рисунок 17. Корпус BTX.

Не смотря на то, что стандарт ВТХ имеет свои существенные преимущества, для учебной лаборатории выбраны корпуса стандарта АТХ, так как данный стандарт уже давно зарекомендовал себя и широко распространен на рынке компьютерных комплектующих.

Был выбран корпус Pangu Simple S1602BS ATX MidiTower, Black-Silve С установленным дополнительным клером (Рис.18).

Рисунок 18. Корпус Pangu Simple S1602BS ATX MidiTower, Black-Silve

Классический кейс стандарта ATX с блоком питания Pangu S380.
Отличительной чертой компьютерных корпусов серии Simple является невысокая цена.
Корпус оборудован блоком питания достаточной мощностью для офисного и домашнего компьютера не высокой производительности.
Серия Simple - отличный выбор для недорогих компьютеров, оборудованных PCI-E видеокартой средней производительности.
Блок питания оснащен разъемами дополнительного питания 8pin 12V и 6pin PCI-E для видеокарты.

Тип кейса – Middle Tower

Отсеки для накопителей:

5,25” - 3 шт.

5.25” (внутренний) - 1шт.

3.5” (внешний) - 1шт.

3.5” (внутренний) - 4шт.

Цвет - Черный/Серебристый

Материалы:

o металл (SGCC 0.45mm)

o высококачественный пластик

Материнские платы - ATX / Micro-ATX

Стандарт блока питания – ATX

I / O ...

2.2.8 Монитор

Монитор - универсальное устройство визуального отображения всех видов информации состоящее из дисплея и устройств предназначенное для вывода текстовой, графической и видео информации на дисплей.

В настоящее время в основном используются 2 типа мониторов: ЭЛТ- мониторы и ЖК-мониторы.

ЭЛТ-мониторы . Самым важным элементом монитора является кинескоп, называемый также электронно- лучевой трубкой. Кинескоп состоит из герме- тичной стеклянной трубки, внутри которой находится вакуум. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором.

ЖК-монитор - плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Многоцветное изображение формируется с помощью RGB-триад.

Каждый пиксель ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Важнейшие характеристики ЖК-мониторов:

Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.

Размер точки : расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана (формат ): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

Видимая диагональ : размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.

Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика : минимальное время, необходимое пикселю для изменения своей яркости. Методы измерения неоднозначны.

Угол обзора : угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.

Тип матрицы : технология, по которой изготовлен ЖК-дисплей.

Входы : например, DVI, D-Sub, HDMI и т.п.

Для компьютеров в учебной лаборатории, с учётом цвета корпуса системного блока, подобран монитор LG L1742SE-BF (Рис.19).

Рисунок 19. Монитор LG L1742SE-BF.

· Параметры монитора:

· Цвета, использованные в оформлении: Чёрный;

· Диагональ: 17");

· Точка LCD-матрицы: 0.294 мм;

· Яркость LCD-матрицы: 250 кд/м2;

· Контрастность LCD-матрицы: 2000:1 - статическая, 50000:1 (ACM -adaptive contrast management);

· Поверхность экрана монитора: Матовая;

· Время отклика: 5 мс; Формат LCD-матрицы: 5:4;

· Разрешение LCD-матрицы: 1280 x 1024;

· Угол обзора LCD-матрицы: 160° по горизонтали, 160° по вертикали при CR > 10:1;

· Интерфейс: VGA (15-пиновый коннектор D-sub), ;

· Блок питания монитора: Встроенный; Потребление энергии: 38.5 Вт - максимальное, 27.3 Вт - в режиме Energy Star, 1.5 Вт - в режиме ожидания;

· Размеры (ширина х высота х глубина): 408 x 406.8 x 180.4 мм; Вес: 3.91 кг.

2.2.9 Устройства ввода.

Устройства ввода - приборы для занесения (ввода) данных в компьютер во время его работы. Основными устройствами ввода информации от пользователя в компьютер являются мышь и клавиатура.

Клавиатура . Стандартная компьютерная клавиатура, также называемая клавиатурой PC/AT или AT-клавиатурой, имеет 101 или 102 клавиши. Расположение клавиш на AT-клавиатуре подчиняется единой общепринятой схеме, спроектированной в расчёте на английский алфавит.

По своему назначению клавиши на клавиатуре делятся на шесть групп:

· функциональные;

· алфавитно-цифровые;

· управления курсором;

· цифровая панель;

· специализированные;

· модификаторы.

Двенадцать функциональных клавиш расположены в самом верхнем ряду клавиатуры. Ниже располагается блок алфавитно-цифровых клавиш. Правее этого блока находятся клавиши управления курсором, а с самого правого края клавиатуры- цифровая панель.

Многие современные компьютерные клавиатуры, помимо стандартного набора из ста четырёх клавиш, снабжаются дополнительными клавишами (как правило, другого размера и формы), которые предназначены для упрощённого управления некоторыми основными функциями компьютера (в основном мультимедийных). Такие клавиатуры называются «мультимедийными клавиатурами».

Мышь воспринимает своё перемещение в рабочей плоскости (обычно - на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения.

· Датчики перемещения:

· Прямой привод;

· Шаровой привод;

· Оптические мыши первого поколения;

· Оптические мыши второго поколения;

· Лазерные мыши;

· Индукционные мыши;

· Гироскопические мыши.

В настоящее время для подключения клавиатуры и мыши используются интерфейсы: PS/2 и USB.

Для рабочих станций в учебных лабораториях были выбраны стандартная клавиатура с дополнительными мультимедийными возможностей Genius KB-200

Ergo (PS/2, 104 клавиши, влагозащита, подставка под запястья) (Рис.20) и лызерная

мышь Genius NetScroll 100 Optical USB (USB, 3 клавиши, включая колёсико-клавишу) (Рис.21).


Рисунок 20. Клавиатура Genius KB-200 Ergo

Рисунок 21. Мышь Genius NetScroll 100 Optical USB

2.3.1 Печатающие устройства.

Принтер - устройство печати цифровой информации на твёрдый носитель,обычно на бумагу. Относится к терминальным устройствам компьютера.

Процесс печати называется вывод на печать, а получившийся документ - распечатка или твёрдая копия.

Принтеры бывают струйные, лазерные, матричные и сублимационные, а по цвету печати - чёрно-белые (монохромные) и цветные.

Лазерные принтеры . По поверхности фотобарабана коротроном (скоро троном) заряда, либо валом заряда равномерно распределяется статический заряд, после этого светодиодным лазером (либо светодиодной линейкой) на фотобарабане снимается заряд, - тем самым на поверхность барабана помещается скрытое изображение. Далее на фотобарабан наносится тонер. Тонер притягивается к разряженным участкам поверхности фотобарабана, сохранившей скрытое изображение. После этого фотобарабан прокатывается по бумаге, и тонер переносится на бумагу коротроном переноса, либо валом переноса. После этого бумага проходит через блок термозакрепления для фиксации тонера, а фотобарабан очищается от остатков тонера и разряжается в узле очистки.

Струйные принтеры . Принцип действия струйных принтеров похож на матричные принтеры тем, что изображение на носителе формируется из точек. Но вместо головок с иголками в струйных принтерах используется матрица, печатающая жидкими красителями.

Сублимационные принтеры . Термосублимация - это быстрый нагрев красителя, когда минуется жидкая фаза. Из твёрдого красителя сразу образуется пар. Чем меньше порция, тем больше фотографическая широта (динамический диапазон) цветопередачи. Пигмент каждого из основных цветов, а их может быть три или четыре, находится на отдельной (или на общей многослойной) тонкой лавсановой ленте. Печать окончательного цвета происходит в несколько проходов: каждая лента последовательно протягивается под плотно прижатой термоголовкой, состоящей из множества термоэлементов. Эти последние, нагреваясь, возгоняют краситель. Точки, благодаря малому расстоянию между головкой и носителем, стабильно позиционируются и получаются весьма малого размера.

Матричные принтеры . Изображение формируется печатающей головкой, которая состоит из набора иголок (игольчатая матрица), приводимых в действие электромагнитами. Головка передвигается построчно вдоль листа, при этом иголки ударяют по бумаге через красящую ленту, формируя точечное изображение.

2.3.2 Сканеры.

Сканер - устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

Бывают ручные, рулонные, планшетные и проекционные сканеры. Разновидностью проекционных сканеров являются слайд-сканеры, предназначенные для сканирования фотопленок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель (ФЭУ).

Принцип работы однопроходного планшетного сканера состоит в том, что вдоль сканируемого изображения, расположенного на прозрачном неподвижном стекле, движется сканирующая каретка с источником света. Отраженный свет через оптическую систему сканера (состоящую из объектива и зеркал или призмы) попадает на три расположенных параллельно друг другу фоточувствительных полупроводниковых элемента на основе ПЗС, каждый из которых принимает информацию о компонентах изображения.

Для учебной лаборатории выбрано многофункциональное устройство (МФУ)

Canon i-SENSYS MF4410 (Рис.22).

Преимущества МФУ:

· экономия пространства;

· цена. МФУ принтер-копир-сканер стоит намного дешевле, чем все эти

устройства, приобретенные отдельно;

· возможность проделать весь спектр работ на одном универсальном

сетевом устройстве;

· удобство обслуживания;


Рисунок 22. МФУ Canon i-SENSYS MF4410 .

Общие параметры:

- Позиционирование Печать документов

- Объем памяти (Стандарт) (Мб) 64

- Тип печати Лазерная

- Цветная печать Нет

- Типы печатных носителей Глянцевая бумага, матовая бумага, конверты

- Максимальный формат печати А4

- Разрешение печати 600 x 600

- Тип картриджа 728

- Наличие двусторонней печати Нет

- Печать без полей Нет

- Скорость печати До 23 стр./мин

- Прямая печать с цифровой фотокамеры

- Тип сканера Планшетный

- Разрешение сканирования 9600 x 9600

- Коэффициент масштабирования 25–400%

- Функции факса Нет

- Интерфейс подключения USB

- Беспроводная связь Нет

- Потребляемая мощность Макс. 1220 Вт

- Причина выбора Монохромный 5-строчный дисплей, доступная цена

3 Технология сборки, настройки компьютеров, установки программного обеспечения.

3.1 Расчет системы охлаждения.

Расчет охлаждения центрального процессора

Для стабильной работы процессора необходимо, чтобы его рабочая температура не поднималась выше определенного уровня, иначе при работе возможны сбои и зависания машины. Максимальная рабочая температура ядер процессора составляет 72.6°C, при расчете для надежности принимается допустимая температура равная 60°C. Оптимальная температура внутри системного блока 35°C. Необходимо выяснить, способен ли выбранный кулер обеспечить эффективное охлаждение корпуса процессора. Фундаментальной технической характеристикой кулера является термическое сопротивление относительно поверхности процессорного кристалла – величина, позволяющая оценить его эффективность в качестве охлаждающего устройства.

Термическое сопротивление процессора рассчитывается следующим образом:

Rt=(Tc-Ta)/W, (3.1)

где Rt - термическое сопротивление радиатора, °С/Вт;

Тс - температура процессора, которую необходимо достичь, применяя

кулер, °С;

Та - температура внутри компьютерного корпуса, °С;

W - тепловая мощность, рассеиваемая процессором, Вт.

Процессор Intel Core i3-560 рассеивает мощность 73Вт. Тогда термическое сопротивление радиатора будет равно:

Rt=(60-35)/73=0,34°C/W

В полученное значение для термосопротивления колера входит и термосопротивление теплового интерфейса. Для тонких слоев (0,05 мм и меньше), таких как термопаста термосопротивление составляет порядка 0,08 – 0,15 °C/W. Поэтому для обеспечения общего термосопротивление 0,15°C/W в случае применения качественной термопасты термосопротивление кулера не должно превышать:

Rt=0,34-0,08=0,26°C/W (3.2)

В случае применения кулера, поставляемого в упаковке с процессором (рис.17), термосопротивление которого равно 41°C/W , максимальная температура процессора будет равна:

Тс=W*(Rt+0,08)+Ta = 73*(0,41+0,08)+35=53,1 °С (3.3)

С учетом того, что максимальная температура ядер данного процессора составляет 72.6°C, был выбран этот кулер.

РАСЧЕТ ОХЛАЖДЕНИЯ КОРПУСА

Q = 1,76*P/(Ta-T0) (3.4)

где Р - полная тепловая мощность компьютерной системы;

Та - температура внутри системного корпуса;

То - температура «на входе» корпуса (температура в помещении);

Q - производительность (расход) корпусной системы охлаждения.

В таблице приведена тепловая мощность комплектующих элементов.

Таблица 3 Тепловая мощность комплектующих элементов.

Температура снаружи корпуса равна 25°С, желаемая температура внутри корпуса равна 35°. Тогда производительность вентилятора должна быть равна по

формуле (3.4):

Q = 1,76*208/(35-25) = 37 CFM

Реальная производительность вентилятора в конкретных эксплуатационных условиях зависит от системного импеданса, который выражается соотношением:

Р = k*Qn (3.5)

где к - системная константа,

Q - производительность вентилятора,

n - турбулентный фактор (1 <= n <=2, n = 1 при ламинарном режиме течения потока, п = 2 при турбулентном течении потока),

Р - системный импеданс.

Таблица 4Ориентировочные значения разменной константы k.


МСЗ - малая степень заполнения корпуса (заняты слот AGP, 1 слотРС!, 1 отсек для

устройств 5.25”. 2 отсека для устройств 3.5”).

ССЗ - средняя степень заполнения корпуса (заняты слот AGP, 2-3 слота PCI или других шин,

2-3 отсека для устройств 5.25”, 2 отсека для устройств 3.5”).

ВСЗ - высокая степень заполнения корпуса (заняты слот AGP, не менее 4-5 слотов PCI или

других шин, 3-4 отсека для устройств 5.25”, все доступные отсеки для устройств 3.5”).

Значение этой константы можно варьировать в пределах ±5%, если литраж вашего корпуса немного больше или немного меньше опорных показателей.

Размерная системная константа выбирается из расчета общего объема корпуса < 40л и малой степени заполнения корпуса (1 слот PCI-E, 1 слот PCI, 1 отсек для устройств 5.25", 2 отсека для устройств 3.5"). Требуемое значение = 0,06

Блок питания корпуса стандартный, вентилятор работает на выдув, значит течение потока ламинарное. Турбулентный фактор = 1. Поскольку блок питания корпуса оснащен стандартным вентилятором со скоростью вращения 2500 об/мин, то его производительность берется равной 30 CFM. Тогда системный импеданс равен по формуле (3.5):

Р = 0,06*30 = 1,8 ттН2О

#PCI

Внимание! Эта статья о шине PCI и её производных PCI64 и PCI-X("Пи-си-ай Икс")! Не путайте её с более новой шиной ("Пи-си-ай Экспресс"), которая полностью несовместима с шинами, описанными в данном FAQ.


PCI 2.0 - первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5В.

PCI 2.1 - отличалась от 2.0 возможностью одновременной работы нескольких bus-master устройств (т.н. конкурентный режим), а также появлением универсальных карт расширения, способных работать как в 5В, так и в 3.3В слотах. Способность работать с 3.3В картами и наличие соответствующих линий питания в версии 2.1 являлась опциональной.Появились расширения PCI66 и PCI64.

PCI 2.2 - версия базового стандарта шины, допускающая подключение карт расширения с сигнальным напряжением как 5В, так и 3.3В. 32-битные версии этих стандартов являлись наиболее распространённым типом слотов на на момент написания FAQ. Используются слоты типа 32-бита, 5В.
Cделанные в соответствии с этими стандартами карты расширения имеют универсальный разъём и способны работать практически во всех более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах 2.1.

PCI 2.3 - следующая версия общего стандарта на шину PCI, слоты расширения, соответствующие этому стандарту, несовместимы с картами PCI 5В, несмотря на продолжающееся использование 32-битных слотов с 5В-ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5В-слотах ранних версий (до 2.1 включительно).
Напоминаем, что напряжение питания (не сигнальное!) 5В сохраняется абсолютно на всех версиях разъёмов шины PCI.

PCI 64 - расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Cлот PCI64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности), точные данные в каждом конкретном случае можно узнать из спецификаций устройства.
Первые версии PCI64 (производные от PCI 2.1)использовали слот PCI 64-бита 5В и работали на тактовой частоте 33МГц.

PCI 66 - появившееся в версии 2.1 расширение стандарта PCI с поддержкой тактовой частоты 66МГц, также, как и PCI64 позволяет удвоить пропускную способность. Начиная с версии 2.2 использует 3.3В-слоты (32-битный вариант на ПК практически не встречается), карты имеют универсальный либо 3.3В форм-фактор. (Имелись и основанные на версии 2.1 казуистически редкие на рынке ПК 5В 66МГц решения, подобные слоты и платы были совместимы только между собой)

PCI 64/66 - комбинация двух вышеописанных технологий, позволяет учетверить скорость передачи данных по сравнению с базовым стандартом PCI, и использует 64 бита 3.3В слоты, совместимые только с универсальными и 3.3В 32-битными картами расширения. Карты стандарта PCI64/66 имеют универсальный (имеющий ограниченную совместимость с 32-битными слотами) либо 3.3В форм-фактор(последний вариант принципиально не совместим с 32-битными 33МГц слотами популярных стандартов)
В настоящее время под термином PCI64 подразумевается именно PCI64/66, поскольку 33МГц 5В 64-битные слоты не применяются уже достаточно давно.

PCI-X 1.0 - Расширение PCI64 с добавлением двух новых частот работы, 100 и 133МГц, а также механизма раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3.3В и универсальными PCI-картами.
PCI-X карты обычно выполняются в 64-бит 3.3В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые PCI-X карты - в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3.
В сложных случаях для того, чтобы быть полностью уверенным в работоспособности выбранной вами комбинации из мат.платы и карты расширения, случае надо посмотреть таблицы совместимости (compatibility lists) производителей обоих устройств.

PCI-X 2.0 - дальнейшее расширение возможностей PCI-X 1.0, добавлены скорости в 266 и 533МГц, а также коррекция ошибок чётности при передаче данных.(ECC). Допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах, сигнальное напряжение снижено до 1.5В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3.3В.

PCI-X 1066/PCI-X 2133 - проектируемые будущие варианты шины PCI-X, c результирующими частотами работы 1066 и 2133МГц соответственно, изначально предназначенные для подключения 10 и 40Гбит Ethernet адаптеров.

Для всех вариантов шины PCI-X существуют следующие ограничения по количеству подключаемых к каждой шине устройств:
66МГц - 4
100МГц - 2
133МГц - 1 (2, если одно или оба устройства не находятся на платах расширения, а уже интегрированы на одну плату вместе с контроллером)
266,533МГц и выше -1.

Вот почему в некоторых ситуациях для обеспечения стабильности работы нескольких установленных устройств необходимо ограничивать максимальную частоту работы использованной шины PCI-X (обычно это делается джамперами)

СompactPCI - стандарт для разъёмов и карт расширения, применяемый в промышленных и встраиваемых компьютерах. Механически не совместим ни с одним из "общих" стандартов.

MiniPCI - стандарт для плат и разъёмов для интеграции в ноутбуки (обычно используется для адаптеров беспроводной сети) и непосредственно на поверхность . Также механически ни с чем кроме себя не совместим.

Типы PCI-карт расширения:

Сводная таблица конструктивов карт и слотов в зависимости от версии стандарта:

Cводная таблица совместимости карт и слотов в зависимости от версии и конструктива:

Карты
Слоты PCI 2.0/2.1 5B PCI 2.1 универсальный PCI 2.2/2.3 универсальный PCI64/5B
(33МГц)
PCI64/универсальный PCI64/3.3B PCI-X/3.3B PCI-X универсальный
PCI 2.0 Совместимы Совместимы Несовместимы Ограниченно совместимы с потерей производительности Несовместимы
PCI 2.1 Совместимы Совместимы Ограниченно совместимы Ограниченно совместимы с потерей производительности Ограниченно совместимы с потерей производительности Несовместимы
PCI 2.2 Совместимы Ограниченно совместимы с потерей производительности Ограниченно совместимы с потерей производительности Несовместимы Несовместимы Ограниченно совместимы с потерей производительности
PCI 2.3 Несовместимы Ограниченно совместимы Совместимы Несовместимы Ограниченно совместимы с потерей производительности Несовместимы Несовместимы Ограниченно совместимы с потерей производительности
PCIБ
64/5B(33МГц)
Совместимы Совместимы Ограниченно совместимы Совместимы Ограниченно совместимы с потерей производительности Несовместимы Несовместимы Ограниченно совместимы с потерей производительности
PCI64/3.3B Несовместимы Ограниченно совместимы Совместимы Несовместимы Совместимы Совместимы Ограниченно совместимы с потерей производительности Ограниченно совместимы с потерей производительности
PCI-X Несовместимы Ограниченно совместимы Совместимы Несовместимы Совместимы

Поддержка интерфейса PCI Express 3.0 в материнских платах – реальное преимущество или маркетинговый ход?

В течение последних месяцев в модельном ряду разных производителей начали появляться материнские платы, в которых задекларирована поддержка интерфейса PCI Express 3.0. Первыми такие решения анонсировали компании ASRock , MSI и GIGABYTE . Однако на данный момент, на рынке абсолютно отсутствуют чипсеты, графические и центральные процессоры, которые бы поддерживали интерфейс PCI Express 3.0.

Напомним, что стандарт PCI Express 3.0 был утвержден в прошлом году. Он обладает многочисленными преимуществами над своими предшественниками, поэтому не удивительно что производители видеокарт и материнских плат хотят как можно скорее реализовать его в своих решениях. Однако, существующие на сегодня чипсеты от компаний Intel и AMD ограничены поддержкой стандарта PCI Express 2.0. Единственная надежда воспользоваться преимуществами интерфейса PCI Express 3.0 в ближайшей перспективе связана с новыми процессорами Intel Ivy Bridge, анонс которых запланирован лишь на март-апрель следующего года. В этих процессорах интегрирован контроллер шины PCI Express 3.0, но им смогут воспользоваться только графические чипы, поскольку другие компоненты используют контроллер чипсета.

Отметим, что лишь заменой процессора дело не ограничивается. Необходимо дополнительно обновить настройки BIOS и прошивку чипсета. Кроме этого, на материнских платах с несколькими слотами PCI Express x16 появляется проблема с «переключателями» − маленькими микросхемами, которые располагаются возле каждого слота и отвечают за оперативное реконфигурование количества выделенных линий. Данные «переключатели» также должны быть совместимы с интерфейсом PCI Express 3.0. При этом следует отметить, что мостовые микросхемы nForce 200 или Lucid поддерживают лишь стандарт PCI Express 2.0 и они не могут работать со спецификацией PCI Express 3.0.

Последним аргументом является то, что на данный момент у производителей материнских плат отсутствуют инженерные образцы новых процессоров линейки Intel Ivy Bridge или новых графических чипов, в которых на аппаратном уровне реализована поддержка спецификации PCI Express 3.0. Тому анонсированная совместимость с этим высокоскоростным интерфейсом является теоретической и не может, на данный момент, быть практически подтверждена.

Таким образом, поддержка спецификации PCI Express 3.0 современными материнскими платами является сугубо маркетинговым ходом, преимущества от которого пользователь сможет получить лишь через несколько месяцев путем замены процессора и обновления программным компонентов.

Весной 1991 года компания Intel завершает разработку первой макетной версии шины PCI. Перед инженерами была поставлена задача разработать недорогое и производительное решение, которое позволило бы реализовать возможности процессоров 486, Pentium и Pentium Pro. Кроме того, было необходимо учесть ошибки, допущенные VESA при проектировании шины VLB (электрическая нагрузка не позволяла подключать более 3 плат расширения), а также реализовать автоматическую настройку устройств.

В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым, и создаёт PCI Special Interest Group. Благодаря этому любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии. Первая версия шины имела тактовую частоту 33 МГц, могла быть 32- или 64-битной, а устройства могли работать с сигналами в 5 В или 3,3 В. Теоретически пропускная способность шины 133 Мбайт/с, однако в реальности пропускная способность составляла около 80 Мбайт/с.

Основные характеристики:


  • частота шины - 33,33 или 66,66 МГц, передача синхронная;
  • разрядность шины - 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);
  • пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц - 133 Мбайт/с;
  • адресное пространство памяти - 32 бита (4 байта);
  • адресное пространство портов ввода-вывода - 32 бита (4 байта);
  • конфигурационное адресное пространство (для одной функции) - 256 байт;
  • напряжение - 3,3 или 5 В.

Фото разъемов:

MiniPCI - 124 pin
MiniPCI Express MiniSata/mSATA - 52 pin
Apple MBA SSD, 2012
Apple SSD, 2012
Apple PCIe SSD
MXM, Graphics Card, 230 / 232 pin

MXM2 NGIFF 75 pins

KEY A PCIe x2

KEY B PCIe x4 Sata SMBus

MXM3, Graphics Card, 314 pin
PCI 5V
PCI Universal
PCI-X 5v
AGP Universal
AGP 3.3 v
AGP 3.3 v + ADS Power
PCIe x1
PCIe x16
Custom PCIe
ISA 8bit

ISA 16bit
eISA
VESA
NuBus
PDS
PDS
Apple II / GS Expasion slot
PC/ XT / AT expasion bus 8 bit
ISA (industry standard architecture) - 16 bit
eISA
MBA - Micro Bus architecture 16 bit
MBA - Micro Bus architecture с видео 16 bit
MBA - Micro Bus architecture 32 bit
MBA - Micro Bus architecture с видео 32 bit
ISA 16 + VLB (VESA)
Processor Direct Slot PDS
601 Processor Direct Slot PDS
LC Processor Direct Slot PERCH
NuBus
PCI (Peripheral Computer Interconnect) - 5v
PCI 3.3v
CNR (Communications / network Riser)
AMR (Audio / Modem Riser)
ACR (Advanced communication Riser)
PCI-X (Периферийный PCI) 3.3v
PCI-X 5v
PCI 5v + RAID option - ARO
AGP 3.3v
AGP 1.5v
AGP Universal
AGP Pro 1.5v
AGP Pro 1.5v+ADC power
PCIe (peripheral component interconnect express) x1
PCIe x4
PCIe x8
PCIe x16

PCI 2.0

Первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5 вольт. Пиковая пропускная способность - 133 Мбайт/с.

PCI 2.1 - 3.0

Отличались от версии 2.0 возможностью одновременной работы нескольких шинных задатчиков (англ. bus-master, т. н. конкурентный режим), а также появлением универсальных карт расширения, способных работать как в слотах, использующих напряжение 5 вольт, так и в слотах, использующих 3,3 вольта (с частотой 33 и 66 МГц соответственно). Пиковая пропускная способность для 33 МГц - 133 Мбайт/с, а для 66 МГц - 266 Мбайт/с.

  • Версия 2.1 - работа с картами, рассчитанными на напряжение 3,3 вольта, и наличие соответствующих линий питания являлись опциональными.
  • Версия 2.2 - сделанные в соответствии с этими стандартами карты расширения имеют универсальный ключ разъёма по питанию и способны работать во многих более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах версии 2.1.
  • Версия 2.3 - несовместима с картами PCI, рассчитанными на использование 5 вольт, несмотря на продолжающееся использование 32-битных слотов с 5-вольтовым ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5-вольтовых слотах ранних версий (до 2.1 включительно).
  • Версия 3.0 - завершает переход на карты PCI 3,3 вольт, карты PCI 5 вольт больше не поддерживаются.

PCI 64

Расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Слот PCI 64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности). Работает на тактовой частоте 33 МГц. Пиковая пропускная способность - 266 Мбайт/с.

  • Версия 1 - использует слот PCI 64-бита и напряжение 5 вольт.
  • Версия 2 - использует слот PCI 64-бита и напряжение 3,3 вольта.

PCI 66

Версия PCI 66 является работающим на тактовой частоте 66 МГц развитием PCI 64; использует напряжение 3,3 вольта в слоте; карты имеют универсальный, либо форм-фактор на 3,3 В. Пиковая пропускная способность - 533 Мбайт/с.

PCI 64/66

Комбинация PCI 64 и PCI 66 позволяет вчетверо увеличить скорость передачи данных по сравнению с базовым стандартом PCI; использует 64-битные 3,3-вольтовые слоты, совместимые только с универсальными, и 3,3-вольтовые 32-битные карты расширения. Карты стандарта PCI64/66 имеют либо универсальный (но имеющий ограниченную совместимость с 32-битными слотами), либо 3,3-вольтовый форм-фактор (последний вариант принципиально не совместим с 32-битными 33-мегагерцовыми слотами популярных стандартов). Пиковая пропускная способность - 533 Мбайт/с.

PCI-X

PCI-X 1.0 - расширение шины PCI64 с добавлением двух новых частот работы, 100 и 133 МГц, а также механизма раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3.3В и универсальными PCI-картами. PCI-X карты обычно выполняются в 64-бит 3,3 В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые PCI-X карты - в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3. В сложных случаях для того, чтобы быть полностью уверенным в работоспособности комбинации из материнской платы и карты расширения, надо посмотреть таблицы совместимости (compatibility lists) производителей обоих устройств.

PCI-X 2.0

PCI-X 2.0 - дальнейшее расширение возможностей PCI-X 1.0; добавлены частоты 266 и 533 МГц, а также - коррекция ошибок чётности при передаче данных (ECC ). Допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах ; сигнальное напряжение снижено до 1,5 В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3,3 В. В настоящее время для не профессионального сегмента рынка высокопроизводительных компьютеров (мощных рабочих станций и серверов начального уровня), в которых находит применение шина PCI-X, выпускается крайне мало материнских плат с поддержкой шины. Примером материнской платы для такого сегмента является ASUS P5K WS. В профессиональном сегменте применяется в RAID-контроллерах, в SSD-накопителях под PCI-E.

Mini PCI

Форм-фактор PCI 2.2, предназначен для использования, в основном, в ноутбуках.

PCI Express

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI ) - компьютерная шина (хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель шины PCI и высокопроизводительный физический протокол , основанный на последовательной передаче данных . Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда . Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором. Кроме того, шиной PCI Express поддерживается:

  • горячая замена карт;
  • гарантированная полоса пропускания (QoS );
  • управление энергопотреблением;
  • контроль целостности передаваемых данных.

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

  • MiniCard (Mini PCIe ) - замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: x1 PCIe, 2.0 и SMBus.
    • M.2 - вторая версия Mini PCIe, до x4 PCIe и SATA.
  • ExpressCard - подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA , MicroTCA - форм-фактор для модульного телекоммуникационного оборудования.
  • Mobile PCI Express Module (MXM) - промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
  • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
  • StackPC - спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC , FPE и их взаимное расположение.

Несмотря на то, что стандарт допускает x32 линий на порт, такие решения физически достаточно громоздки и не выпускаются.

Год
выпуска
Версия
PCI Express
Кодирование Скорость
передачи
Пропускная способность на x линий
×1 ×2 ×4 ×8 ×16
2002 1.0 8b/10b 2,5 ГТ/с 2 4 8 16 32
2007 2.0 8b/10b 5 ГТ/с 4 8 16 32 64
2010 3.0 128b/130b 8 ГТ/с ~7,877 ~15,754 ~31,508 ~63,015 ~126,031
2017 4.0 128b/130b 16 ГТ/с ~15,754 ~31,508 ~63,015 ~126,031 ~252,062
2019
5.0 128b/130b 32 ГТ/с ~32 ~64 ~128 ~256 ~512

PCI Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года . Основные нововведения в PCI Express 2.0:

  • Увеличенная пропускная способность: ПСП одной линии 500 МБ/с, или 5 ГТ/с (Гигатранзакций/с ).
  • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
  • Динамическое управление скоростью (для управления скоростью работы связи).
  • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
  • Службы управления доступом - опциональные возможности управления транзакциями точка-точка.
  • Управление таймаутом выполнения.
  • Сброс на уровне функций - опциональный механизм для сброса функций (англ. PCI functions) внутри устройства (англ. PCI device).
  • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

PCI Express 2.0 полностью совместим с PCI Express 1.1 (старые будут работать в системных платах с новыми разъемами, но только на скорости 2,5 ГТ/с, так как старые чипсеты не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.).

PCI Express 2.1

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI Express 3.0

В ноябре 2010 года были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s (Гигатранзакций/с ). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х.

PCI Express 4.0

PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до конца 2016 года, однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017. Ожидается, что он будет иметь пропускную способность 16 GT/s, то есть будет в два раза быстрее PCIe 3.0.

Оставьте свой комментарий!