Тональный генератор своими руками. Тональный генератор для эми

В данной статье описывается простой генератор звуковых частот, проще говоря - пищалка. Схема простая и состоит всего из 5 элементов, если не считать батарейку и кнопку.

Описание схемы:
R1 задает смещение на базу VT1. А с помощью C1 осуществляется обратная связь. Динамик является нагрузкой VT2.

Сборка:
Итак, нам понадобится:
1) Комплементарная пара из 2х транзисторов, то есть один NPN и один PNP. Подойдут практически любые маломощные, например КТ315 и КТ361 . Я использовал то, что было под рукой - BC33740 и BC32740.
2) Конденсатор 10-100нФ, я использовал 47нФ (маркировка 473).
3) Подстроечный резистор около 100-200 кОм
4) Любой маломощный динамик. Можно использовать наушники.
5) Батарейка. Можно практически любую. Пальчиковую, или крону, разница будет только в частоте генерации и мощности.
6) Небольшой кусок фольгированного стеклотекстолита, если планируется делать все на плате.
7) Кнопка или тумблер. Мной была использована кнопка из китайской лазерной указки.

Итак. Все детали собраны. Приступаем к изготовлению платы. Я сделал простенькую плату поверхностного монтажа механическим путем (то есть при помощи резака).

Итак, все готово к сборке.

Сначала монтируем основные компоненты.

Потом впаиваем провода питания, батарейку с кнопкой и динамик.

На видео показана работа схемы от 1.5В батарейки. Подстроечный резистор меняет частоту генерации

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ361Б

1 В блокнот
C1 Конденсатор 10-100нФ 1 В блокнот
R1 Резистор 1-200 кОм 1

Выполнить генератор прерывистого тонального сигнала можно по схеме на рис. 5.3. Он позволяет управлять началом работы схемы подачей питающего напряжения на вход DA1/4. Но в тех случаях, когда для работы устройства необходимо использовать два таймера, удобнее взять микросхему, уже имеющую их в одном корпусе (см. табл. 4.2).

Рис. 5.3. Выполненный на двух таймерах генератор прерывистого сигнала

Варианты генераторов, выполненных на сдвоенном таймере, показаны на рис. 5.4 и 5.5. Включение таймера в режиме генератора симметричных импульсов (рис. 5.4, б) позволяет сократить число необходимых элементов. Эти схемы являются универсальными — имеется возможность регулировать частоту звука и интервал повторения в широком диапазоне.

На рис. 5.5 приведена схема генератора, вырабатывающего сигнал для работы звонка тёлефонного вызова с интервалами в 10 с. Для этого использован низкочастотный повышающий напряжение трансформаторе 12 до 70...100 В.

Самый простой формирователь прерывистого звукового сигнала можно выполнить и на одиночном таймере, если воспользоваться любым мигающим светодиодом. Например, светодиоды L-36B, L-56B, L-456B и некоторые другие уже имеют внутри прерыватель (они выпускаются с разным цветом свечения).

Рис. 5.4. Схемы генераторов прерывистого тонального сигнала: а — вариант 1,6 — вариант 2

Включать светодиод надо так, как это показано на рис. 5.6. В этом случае частота чередования пачек полностью зависит от параметров примененного светодиода. Обычно их период мигания находится в Интервале 0,5...1 с. Для устройств сигнализации этого вполне достаточно. Частота заполнения пачек (звуковым сигналом) зависит от номиналов элементов C1-R1.

Рис. 5.5. Схема генератора прерывистого сигнала для работы телефонного звонка

Рис. 5.6. Формирователь прерывистых пачек импульсов

Рис. 5.7. Формирователь прерывистых импульсов без использования мязадающего конденсатора

Рис. 5.10. Схема генератора НЧ сигнала с уменьшающейся частотой

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Э. КУЗНЕЦОВ, г. Москва
Радио, 2002 год, № 5

Тональные импульсы можно использовать для проверки динамических параметров измерителей и авторегуляторов уровня, а также устройств шумоподавления. Стенд с генератором тональных импульсов будет полезен также и при исследовании усилительной и акустической аппаратуры.

Линейность частотной характеристики и точность показаний измерителей уровня нетрудно проверить с помощью обычного генератора звуковых сигналов, но для проверки их динамических параметров необходим генератор тональных импульсов (ГТИ). Подобные генераторы, предлагаемые радиолюбителями, зачастую не соответствуют нормам, где для проверки измерителей уровня (ИУ) частота синусоидального сигнала в импульсах принята 5 кГц, а начало и конец импульсов совпадают с переходами сигнала через "нуль".

Похожие проблемы возникают и при настройке авторегуляторов уровня звуковых сигналов. Время восстановления 0,3...2 с легко увидеть на экране осциллографа, но время срабатывания ограничителя (лимитера) или компрессора может быть менее 1 мс. Для измерения и наблюдения переходных процессов в аудиоаппаратуре удобно использовать ГТИ. В этом случае частоту заполнения импульсов желательно изменять, используя внешний перестраиваемый генератор. Например, при частоте заполнения 10 кГц длительность одного периода равна 0,1 мс, и при наблюдении процесса срабатывания определение времени срабатывания не представляет сложности. Звуковые импульсы с выхода ГТИ должны иметь перепад уровней 10 дБ.

В зарубежной литературе обычно предлагают проводить измерение времени срабатывания при скачкообразном увеличении уровня сигнала на 6 дБ выше нормированного значения, но реальные сигналы имеют существенно больший перепад уровней. Применением такой методики зачастую и объясняется "щелканье" импортных авторегуляторов уровня. Кроме того, почти в любом звуковом генераторе можно скачком изменить уровень на 10 дБ, использовать такой перепад уровней удобно для наблюдения. Поэтому в отечественной практике принято проводить измерения динамических параметров авторегуляторов при изменении, уровней на 10 дБ.

К сожалению, переключатели уровня сигнала многих генераторов в момент переключения дают кратковременный выброс напряжения, и для измерения времени срабатывания использовать их не удается, поскольку авторегулятор "затыкается". В этом случае ГТИ может оказаться очень полезным.

Большинству радиолюбителей проводить подобные измерения приходится нечасто, и такой прибор целесообразно включить в состав измерительного стенда с более широкими возможностями. На его передней панели размещены коммутационные элементы, очень удобные для подключения измерительных приборов и настраиваемой аппаратуры. На рис. 1 показано примерное расположение соединителей (клемм или гнезд) и переключателей. На схеме стенда (рис. 2 ) показаны эти коммутационные цепи.

Схема прибора

Для увеличения кликните по изображению (откроется в новом окне)

Входные гнезда Х1 ("ВХ.1") и Х2 ("ВХ.2") предназначены для подсоединения входов настраиваемой аппаратуры. Тумблеры SA1 и SA2 позволяют подключить входы к соединителям Х2 и ХЗ или замкнуть их на общий провод при измерениях уровня интегральной помехи. В сравнении с кнопками тумблеры дают более наглядное представление о подключении входов. В центральные гнезда Х2 и ХЗ подключают генератор звуковой частоты и вольтметр для контроля входного напряжения. Соединители Х5 и Х8 предназначены для подключения выходов настраиваемой аппаратуры. Один из выходов может быть подключен тумблером SA3 к соединителям Х6 и Х7 для измерительных приборов. При настройке звуковой аппаратуры удобно использовать измеритель нелинейных искажений и осциллограф.

Для коммутационных цепей не нужно никаких источников питания, поэтому с такой коммутацией очень удобно проверять различную аппаратуру.

Если сдвоенный тумблер SA4 (рис. 1) стоит в положении "ПОСТ", сигнал с постоянным уровнем, подаваемый на Х2, ХЗ, поступает, в зависимости от положения тумблеров SA1 или SA2, на соединители Х1, Х4 к входам испытуемой аппаратуры. Если перевести SA4 в верхнее положение, то сигнал с генератора пойдет на входы 1 и 2 через цепи ГТИ. В этом случае стенд должен быть подключен к сети переменного тока 220 В.

Тумблер включения питания SA5 расположен на задней панели, а на переднюю выведены только светодиоды HL1, HL2 (индикация "+" и "-"), сигнализирующие о наличии двуполярного напряжения питания ╠15 В.

Для формирования тональных импульсов используется электронный переключатель DA4. На выводах 16 и 4 значение напряжения сигнала изменяется от нормированного значения до нуля, а на выводах 6, 9 перепад уровня при налаживании устанавливают переменным резистором R15. Выбор режима производят тумблером SA9.

Тональный сигнал заполнения импульсов приходит с генератора на электронный переключатель через буферный ОУ DA1.1. Второй ОУ DA1.2 используется в качестве компаратора, выдавая сигнал синхронизации начала импульса при переходе сигнала заполнения через "нуль". Импульсы с компаратора подаются на тактовый вход D-триггера DD2. На вход D (вывод 9) приходит импульс с одновибратора, собранного на втором триггере DD2.

Длительность импульса изменяется с помощью переключателя SA8.2, изменяющего сопротивление в цепи зарядки С15, подключенного к входу R (вывод 4) одновибратора. Для установки длительности импульсов вполне достаточно обычного осциллографа. Одновибратор запускается сигналами, поступающими с генератора прямоугольных импульсов на инверторах DD1.1 ≈ DD1.3, или в ручном режиме кнопкой SA6 "ПУСК". Если тумблер SA7 переведен в положение "АВТ.", скважность (период) импульсов устанавливают с помощью переменного резистора R11 "СКВ.".

Очень трудно наблюдать переходные процессы на экране осциллографа при длительности тонального импульса 3 мс и большой скважности. Задача упрощается для осциллографов, имеющих внешний запуск при ждущей развертке. Для их синхронизации на задней панели стенда выведено гнездо Х9 "СИНХР.". Запускающий импульс подается на электронный ключ с некоторой задержкой относительно синхронизирующего, определяемой выбором параметров R13, С13.

Высокий уровень, при котором электронный переключатель DA4 пропускает тональный сигнал, появляется с положительным перепадом напряжения от компаратора после появления импульса от одновибратора и заканчивается после окончания этого импульса (при очередном перепаде сигнала с компаратора). Так достигается совпадение начала тонального импульса с переходом сигнала заполнения через "нуль" и удовлетворяется требование генерации целого числа периодов. При положении переключателя SA8 "U Вых " напряжение на управляющем входе DA4 равно нулю и можно выставить выходное напряжение генератора, соответствующее номинальному входному уровню. В положении переключателя SA8 "ТАКТ." микросхема DA4 управляется напряжением, поступающим непосредственно с тактового генератора. Его частоту переключения устанавливают переменным резистором R11.

После электронного переключателя через повторитель DA1.3 и тумблеры SA1 и SA2 тональные импульсы поступают на входы настраиваемой аппаратуры. В устройстве есть еще инвертор DA1.4 и переключатель SA10, который может быть использован для изменения фазы сигнала на одном из входов по отношению к другому. Такой инвертор нужен, например, при проверке синфазности сигналов в стереофонических системах, в АС, но, возможно, вместо него полезнее собрать на этом ОУ встроенный генератор тонального сигнала по схеме, приведенной на рис. 3 . В таком генераторе легко получить Кг менее 0,2% и для многих испытаний обойтись без применения внешнего для стенда генератора.

Для проверки измерителей уровня нужно подключить входы двух каналов (для измерителей стереосигнала) к соответствующим входным соединителям. Затем в положении "U Bыx " переключателя SA8 установить на выходе генератора нормированное значение уровня сигнала с F = 5 кГц и проконтролировать показания обоих каналов измерителя. К примеру, в измерителе уровня светодиоды, соответствующие значению "О дБ", должны зажигаться одновременно, а погрешность шкалы здесь не должна превышать 0,3 дБ. Тумблер SA9 устанавливают в положение "-80 дБ". Затем переводят поочередно переключатель SA8 в положения "10 мс", "5 мс" и "3 мс" и проверяют соответствие нормам показаний ИУ. Положение "200 мс" SA8 используют при проверке измерителей средних значений уровня, которые, к сожалению, преобладают в бытовой аппаратуре.

Чтобы точно проконтролировать величину времени возврата, переменным резистором R11 ("СКВ.") устанавливают частоту сигналов генератора прямоугольных импульсов, при которой сразу после гашения светодиода, соответствующего значению -20 дБ на шкале ИУ, следовал бы следующий импульс. Определить затем период сигналов с помощью осциллографа не составляет труда. Погасание светодиодов в обоих каналах должно происходить синхронно.

При проверке динамических параметров авторегуляторов уровня сигнала используют положение "-10 дБ" переключателя SA9. Входы и выходы подключают к соответствующим соединителям. Выходы каналов контролируют поочередно, хотя при двухка-нальном осциллографе ничто не мешает контролировать одновременно оба выхода. На выходе генератора звуковой частоты при положении "U Bыx " переключателя SA8 выставляют сигнал с уровнем на 10 дБ выше нормированного значения. Затем переводят SA8 на импульсы любой длительности, а переключатель SA7 ≈ в положение "РУЧН.". Ключ остается выключенным и позволяет проконтролировать напряжение на соединителях Х1 и Х2, которое должно соответствовать нормированному значению. Затем переключателем SA7 переводят ГТИ в автоматический режим работы и, выбрав нужную длительность импульсов и скважность, наблюдают переходные процессы на выходе авторегулятора. Если осциллограф работает в ждущем режиме с запуском от синхронизирующих импульсов, легко определить время срабатывания и наличие помех срабатывания или перерегулирование.

В ГТИ использованы четыре микросхемы, и потребление тока очень мало. Это позволяет вместо интегральных стабилизаторов воспользоваться простыми параметрическими стабилизаторами напряжения на стабилитронах. С другой стороны, установив более мощные интегральные стабилизаторы DA2, DA3 серий дА7815 и дА7915, их можно использовать для питания макетов настраиваемых устройств, разместив дополнительный разъем на задней панели (на схеме не показан). В микросхемах предусмотрена защита от короткого замыкания, нередкого при экспериментах.

Передняя панель стенда имеет размеры 195x65 мм. Корпус стенда выполняют из стали.

Для подключения проверяемой аппаратуры удобны гнезда-клеммы типа ЗМП. Помимо них на панели стенда можно установить, в зависимости от проверяемой аппаратуры, соединители соответствующей конструкции, например, гнезда "тюльпан", "джек", ОНЦ-ВГ или иные.

Сдвоенный тумблер SA4 ≈ ПТ8-7, П2Т-1-1 или аналогичный. Переключатель SA2 ≈ галетный ПГ2-8-6П2НТК. Кнопка SA6 "ПУСК" может быть любого типа без фиксации, например, КМ1-1.

Микросхему DA2 К590КН7 можно заменить аналогичной по функциональному назначению. В качестве DA1 можно использовать микросхему с четырьмя ОУ типов LF444, TL084, TL074 или К1401УД4.

Монтаж платы устройства ≈ печатный или навесной на макетной плате.

Стенд с ГТИ можно использовать при испытаниях компандерных систем шумоподавления, динамических фильтров и другой звукотехнической аппаратуры.

ЛИТЕРАТУРА
1. Кузнецов Э. Измерители уровня звуковых сигналов. - Радио, 2001, № 2, с. 16, 17.
2. Микросхемы для бытовой радиоаппаратуры. Справочник. - М.: Радио и связь, 1989.
3. Turuta J. Операционные усилители. Справочник. - М.: Патриот, 1996.

Тональный набор (Dual-tone multi-frequency signaling, DTMF) был разработан компанией Bell Labs в 50-х годах прошлого века для революционного на тот момент времени кнопочного телефона. Для представления и передачи цифровых данных в тоновом режиме используется пара частот (тонов) речевого частотного диапазона. В системе определены две группы из четырех частот, и информация кодируется одновременной передачей двух частот - по одной из каждой группы. Это дает в общей сложности шестнадцать комбинаций для представления шестнадцати разных чисел, символов и букв. В настоящее время DTMF-кодирование используется в широком спектре приложений в области связи и управления, что, например, подтверждается Рекомендацией Q.23 Международного союза электросвязи (МСЭ).

В данной статье описывается схема тонового DTMF-генератора, воспроизводящего все восемь частот и формирующего результирующий выходной двухтоновый сигнал. Рассматриваемая система была построена на базе микросхемы Silego GreenPAK ™ SLG46620V и операционных усилителей Silego SLG88104V. Выдаваемый результирующий сигнал представляет собой сумму двух частот, определяемых строкой и столбцом телефонной клавиатуры.

Предлагаемая схема использует четыре входа для выбора формируемой комбинации частот. Схема также имеет вход разрешения, который запускает генерацию и определяет продолжительность времени передачи сигнала. Частота выходного сигнала генератора соответствует требованиям стандарта МСЭ для DTMF.

Тоновые DTMF-сигналы

DTMF-стандарт определяет кодирование цифр 0-9, букв A, B, C и D и символов * и # в виде комбинации двух частот. Эти частоты разделены на две группы: группа высоких частот и группа низких частот. В таблице 1 показаны частоты, группы и соответствующие представления символов.

Таблица 1. Кодирование сигналов тоновом режиме DTMF

Группа верхних частот

Группа нижних частот

Частоты были выбраны таким образом, чтобы избежать кратных гармоник. Кроме того, их сумма или разность не дают другой DTMF-частоты. Таким образом, удается избежать гармоник или модуляционных искажений.

В стандарте Q.23 указывается, что погрешность каждой передаваемой частоты должна находиться в диапазоне ± 1,8% от номинального значения, а суммарные искажения (в результате гармоник или модуляции) должны быть на 20 дБ ниже основных частот.

Описанный выше результирующий сигнал может быть описан как:

s(t) = Acos(2πfhight)+ Acos(2πflowt),

где fhigh и flow являются соответствующими частотами из групп высоких и низких частот.

На рисунке 1 показан результирующий сигнал для цифры «1». На рисунке 2 показан частотный спектр, соответствующий данному сигналу.

Рис. 1. Тональный DTMF-сигнал

Рис. 2. Спектр тонального DTMF-сигнала

Длительность DTMF-сигналов может быть различной и зависит от конкретного приложения, в котором используется тональное кодирование. Для наиболее распространенных приложений, значения длительностей, как правило, лежат между ручным и автоматическим набором. В таблице 2 показано краткое описание типовой продолжительности времени для двух типов набора.

Таблица 2. Длительность сигналов при тоновом наборе

Тип набора

Группа верхних частот

Группа верхних частот

Ручной набор

Автоматический набор

Для получения большей гибкости DTMF-генератор, предлагаемый в данном руководстве, снабжен входом разрешения, который используется для старта генерации сигнала и определяет его длительность. При этом продолжительность сигнала равна длительности импульса на входе разрешения.

Аналоговая часть схемы DTMF-генератора

Рекомендация МСЭ Q.23 определяет DTMF-сигналы как аналоговые сигналы, созданные двумя синусоидальными волнами. В предлагаемой схеме DTMF-генератора микросхема Silego GreenPAK SLG46620V генерирует сигналы прямоугольной формы с желаемыми DTMF-частотами. Чтобы получить синусоидальные сигналы необходимой частоты и сформировать результирующий сигнал (сумма двух синусоидальных волн), потребуются аналоговые фильтры и сумматор. По этой причине в данном проекте было решено использовать фильтры и сумматор на базе операционных усилителей SLG88104V.

На рисунке 3 показана структура предлагаемой аналоговой части устройства.

Рис. 3. Схема аналоговой обработки для получения DTMF-сигнала

Для получения синусоидальных сигналов из прямоугольных импульсов используются аналоговые фильтры. После выполнения фильтрации происходит суммирование двух сигналов и формирование желаемого выходного двухтонового DTMF-сигнала.

На рисунке 4 представлен результат преобразования Фурье, используемого для получения спектра прямоугольного сигнала.

Рис. 4. Спектр сигнала прямоугольной формы

Как можно заметить, прямоугольный сигнал содержит только нечетные гармоники. Если представить такой сигнал с амплитудой A в виде ряда Фурье, то он будет иметь следующий вид:

Анализ этого выражения позволяет сделать вывод, что если аналоговые фильтры имеют достаточное затухание для гармоник, то вполне реально получить синусоидальные сигналы с частотой, равной частоте исходного прямоугольного сигнала.

Принимая во внимание допуск на уровень помех, определенный в стандарте Q.23, необходимо обеспечить, чтобы все гармоники были ослаблены на 20 дБ или более. Кроме того, любая частота из группы нижних частот должна сочетаться с любой частотой из группы верхних частот. Учитывая эти требования, были разработаны два фильтра, по одному для каждой группы.

В качестве обоих фильтров использовались низкочастотные фильтры Баттерворта. Затухание фильтра Баттерворта порядка n можно рассчитать как:

A(f)[дБ] = 10 log(A(f) 2) = 10log(1+(f/fc) 2n),

где fc - частота среза фильтра, n - порядок фильтра.

Разница в затухании между самой низкой частотой и самой высокой частотой каждой группы может быть не более 3 дБ, поэтому:

A(fHIGHER)[дБ] - A(fLOWER)[дБ] > 3 дБ.

Учитывая абсолютные значения:

A(fHIGHER) 2 / A(fLOWER) 2 > 2.

Кроме того, как мы уже говорили ранее, ослабление гармоник должно составлять 20 дБ или более. При этом наихудшим будет случай самой низкой частоты в группе, потому что ее 3-я гармоника является самой низкочастотной и находится ближе всего к частоте среза фильтра. Учитывая, что 3-я гармоника в 3 раза меньше фундаментальной, фильтр должен отвечать условию (абсолютные значения):

A(3fLOWER) 2 / A(fLOWER) 2 > 10/3.

Если эти уравнения применяются к обеим группам, то используемые фильтры должны быть фильтрами второго порядка. Это означает, что они будут иметь по два резистора и по два конденсатора, если их реализовывать с помощью операционных усилителей. При использовании фильтров третьего порядка чувствительность к допускам компонентов была бы ниже. Выбранные частоты отсечек фильтров составляют 977 Гц для группы нижних частот и 1695 Гц для группы верхних частот. При таких значениях отличия в уровнях сигналов в группах частот согласуются с приведенными выше требованиями, а чувствительность к изменениям частоты отсечки из-за допусков компонентов оказывается минимальной.

Принципиальные схемы фильтров, реализованные с помощью SLG88104V, представлены на рисунке 5. Номиналы первой пары R-C выбраны таким образом, чтобы ограничить выходной ток микросхемы SLG46620V. Второе звено фильтра определяет коэффициент усиления, который составляет 0,2. Амплитуда прямоугольных сигналов задает рабочую точку операционного усилителя на уровне 2,5 В. Нежелательные напряжения блокируются конденсаторами выходных фильтров.

Рис. 5. Принципиальные схемы выходных фильтров

На выходе сигналы фильтров суммируются, и результирующий сигнал представляет собой сумму гармоник, выбранных из группы нижних и верхних частот. Для компенсации затухания фильтра амплитуду выходного сигнала можно подстроить с помощью двух резисторов R9 и R10. На рисунке 6 показана схема сумматора. На рисунке 7 представлена вся аналоговая часть схемы.

Рис. 6. Принципиальная схема сумматора

Рис. 7. Аналоговая часть схемы

Цифровая часть схемы тонального DTMF-генератора

Цифровая часть схемы тонального DTMF-генератора включает целый набор генераторов прямоугольных импульсов - по одному для каждой частоты DTMF. Так как для создания этих генераторов требуется восемь счетчиков, то для их реализации была выбрана микросхема GreenPAK SLG46620V. На выходах цифровой схемы формируются два сигнала прямоугольной формы, по одному на каждую группу частот.

Прямоугольные сигналы формируются с помощью счетчиков и D-триггеров и имеют коэффициент заполнения 50%. По этой причине частота переключения счетчиков в два раза выше требуемой частоты DTMF, а DFF-триггер делит выходной сигнал на два.

Источником тактирования для счетчиков является встроенный RC-генератор 2 МГц, частота которого дополнительно делится на 4 или 12. Делитель выбирается с учетом разрядности и максимального значения каждого счетчика, необходимого для получения конкретной частоты.

Для генерации высоких частот требуется меньшее количество отсчетов, поэтому для их формирования используются 8-битные счетчики, тактируемые от внутреннего RC-генератора, сигнал которого поделен на 4. По той же причине более низкие частоты реализованы с помощью 14-битных счетчиков.

Микросхема SLG46620V имеет только три стандартных 14-битных счетчика, поэтому одна из нижних частот была реализована с помощью 8-разрядного счетчика CNT8. Чтобы число отсчетов укладывалось в диапазоне 0…255, для тактирования данного CNT8 пришлось использовать сигнал RC-генератора, поделенный на 12. Для этой схемы была выбрана частота с наибольшим числом отсчетов, то есть самая низкая частота. Это позволило минимизировать погрешность.

В таблице 3 показаны параметры каждого прямоугольного сигнала.

Таблица 3. Параметры генераторов прямоугольных импульсов

Тактирование

Ошибка частоты [%]

Группа нижних частот

Группа верхних частот

Как видно из таблицы, все частоты имеют погрешность менее 1,8%, поэтому они соответствуют стандарту DTMF. Эти расчетные характеристики, основанные на идеальном значении частоты RC-генератора, могут быть подстроены с учетом измерения выходной частоты RC-генератора.

Хотя в предлагаемой схеме все генераторы работают параллельно, но сигнал только одного генератора из каждой группы будет поступать на выход микросхемы. Выбор конкретных сигналов определяет пользователь. Для этого применяются четыре входа GPIO (два бита для каждой группы) с таблицей истинности, показанной в таблице 4.

Таблица 4. Таблица выбора частот из группы нижних частот

Группа нижних частот

Таблица 5. Таблица выбора частоты из группы верхних частот

Группа верхних частот

На рисунке 8 показана логическая схема генератора прямоугольных сигналов с частотой 852 Гц. Эта схема повторяется для каждой частоты с соответствующими настройками счетчика и конфигурацией LUT.

Рис. 8. Генератор импульсов прямоугольной формы

Счетчик формирует выходную частоту, определяемую его настройками. Эта частота равна удвоенной частоте соответствующего тона DTMF. Параметры конфигурации счетчика показаны на рисунке 9.

Рис. 9. Пример настройки счетчика генератора прямоугольных импульсов

Выходной сигнал счетчика подключается к тактовому входу триггера D-Flip Flop. Так как выход DFF сконфигурирован как инвертированный, то если подключить выход DFF к его входу, то D-триггер преобразуется в T-триггер. Параметры конфигурации DFF можно увидеть на рисунке 10.

Рис. 10. Пример настройки триггера генератора прямоугольных импульсов

Сигнал с выхода DFF поступает на вход таблицы истинности LUT. Таблицы истинности LUT используются для выбора одного сигнала для каждого конкретного сочетания R1-R0. Пример конфигурации LUT представлен на рисунке 11. В данном примере, если на R1 поступает «1», а на R0 подается «0», входной сигнал передается на выход. В остальных случаях на выходе присутствует «0».

Рис. 11. Пример настройки таблицы истинности генератора прямоугольных импульсов

Как было сказано выше, предлагаемая схема имеет вход разрешения Enable. Если на входе разрешения Enable присутствует логическая единица «1», то генерируемые прямоугольные сигналы подаются на пару выходов микросхемы. Длительность передачи равна длительности импульса на входе разрешения. Чтобы реализовать эту функцию, потребовалось еще несколько блоков таблиц истинности LUT.

Для группы верхних частот используется один 4-разрядный LUT и один 2-битный LUT, как показано на рисунке 12.

Рис. 12. Схема выхода группы верхних частот

4-битный LUT1 настроен как логический элемент ИЛИ, поэтому он выдает логическую единицу «1», если на любом из его входов присутствует «1». Таблицы истинности C1/ C0 допускают выбор только одного из генераторов, поэтому 4-разрядный LUT1 определяет какой сигнал поступает на выход. Выход этого LUT подключается к 2-битному LUT4, который передает сигнал только в том случае, если на входе разрешения присутствует логическая «1». На рисунках 13 и 14 показаны конфигурации 4-битного LUT1 и 2-битного LUT4.

Рис. 13. Конфигурация 4-битного LUT1

Рис. 14. 2-битная конфигурация LUT4

Так как 4-битных таблиц истинности LUT больше не было, для группы нижних частот использовались два 3-битных LUT.

Рис. 15. Схема выхода группы нижних частот

Полная внутренняя схема GreenPAK SLG46620V показана на рисунке 16. На рисунке 17 представлена итоговая принципиальная схема DTMF-генератора.

Рис. 16. Блок-схема генератора тональных сигналов DTMF

Рис. 17. Принципиальная схема DTMF-генератора тональных сигналов

Тестирование схемы DTMF-генератора

На первом этапе тестирования предложенного DTMF-генератора было решено проверить частоты всех формируемых прямоугольных сигналов с помощью осциллографа. В качестве примера на рисунке 18 и 19 показаны выходные сигналы прямоугольной формы для частот 852 Гц и 1477 Гц.

Рис. 18. Прямоугольный сигнал 852 Гц

Рис. 19. Прямоугольный сигнал 1477 Гц

Как только частоты всех прямоугольных сигналов были проверены, началось испытание аналоговой части схемы. Были исследованы выходные сигналы для всех комбинаций из группы нижних и верхних частот. В качестве примера на рисунке 20 показана сумма сигналов 770 Гц и 1209 Гц, а на рисунке 21 показана сумма сигналов 941 Гц и 1633 Гц.

Рис. 20. Тональный DTMF-сигнал 770 Гц и 1209 Гц

Рис. 21. Тональный DTMF-сигнал 941 Гц и 1633 Гц

Заключение

В данной статье была предложена схема тонового DTMF-генератора, построенного на базе микросхемы Silego GreenPAK SLG46620V и операционных усилителей Silego SLG88104V. Генератор дает пользователю возможность выбирать комбинации требуемых частот с помощью четырех входов и управлять входом разрешения, который определяет длительность генерации выходных сигналов.

Характеристики микросхемы SLG46620V:

  • Тип: программируемая микросхема смешанных сигналов;
  • Аналоговые блоки: 8-битный АЦП, два ЦАП, шесть компараторов, два фильтра, ИОН, четыре интегрированных генератора;
  • Цифровые блоки: до 18 портов ввода/вывода, матрица соединений и комбинаторная логика, программируемые схемы задержки, программируемый функциональный генератор, шесть 8-битных счетчиков, три 14-битных счетчика, три ШИМ-генератора/компаратора;
  • Коммуникационный интерфейс: SPI;
  • Диапазон напряжений питания: 1,8…5 В;
  • Диапазон рабочих температур: -40…85 °C;
  • Корпусное исполнение: 2 x 3 x 0,55 мм 20-выводной STQFN.

Одно из основных требований, предъявляемых к усилителям однополосного сигнала,- линейность их амплитудной характеристики. Усилитель с плохой линейностью обычно является источником помех другим радиолюбителям, а иногда и телезрителям. Для выявления нелинейных искажений в усилителях SSB сигнала применяют метод испытания двумя тонами .
Если подать на вход однополосного передатчика два низкочастотных сигнала разных по частоте, но одинаковых по амплитуде, то сигнал на выходе усилителя мощности будет изменяться по синусоидальному закону от нуля до максимального значения (рис.1 ).

Период изменения определяется разностью частот на входе передатчика. По форме огибающей выходного сигнала, по отклонениям её от синусоидального закона можно судить о линейности амплитудной характеристики устройства.
Форму и уровень сигнала контролируют осциллографом. Так как амплитуда выходного напряжения исследуемого усилителя составляет обычно десятки вольт, то сигнал можно подать непосредственно на отклоняющие пластины осциллографа (в том числе и низкочастотного). Источником двухтонального сигнала может быть генератор, схема которого изображена на рис.2 .


Рис.2


Он состоит из двух генераторов с обратной связью через двойные Т-мосты и эмиттерного повторителя. Генератор, собранный на транзисторе V1, вырабатывает частоту 1550 Гц. а на V2- 2150 Гц. Через развязывающие резисторы R1 и R5 сигналы генераторов поступают на эмиттерный повторитель (транзистор V3). При использовании элементов с номиналами, указанными на схеме, "суммарное" выходное напряжение (включены оба генератора устройства) составляет около 0,1 В. Выходное сопротивление - около 300 Ом.
Налаживание начинают с точной установки частоты генераторов. Для этого, подавая поочередно питание на каждый из них, подбирают элементы Т-мостов. При этом следует иметь в виду, что для сохранения хорошей синусоидальной формы выходного сигнала сопротивление резисторов R2 (R6) и R4 (R7) должно быть примерно в 10 раз больше сопротивления резистора R3 (R8), а ёмкость конденсаторов С1 (С6) и С4 (С8) - в два раза меньше ёмкости конденсатора СЗ (С7). После установки частот генераторов подстроенным резистором R5 выравнивают амплитуды сигналов. Так как резистор R5 в некоторой степени влияет и на уровень сигнала генератора на транзисторе V1, эту операцию проводят методом последовательных приближений.
Генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 55x65 мм (рис. 3 ).


Рис.3


В нем использованы конденсаторы КМ-5, резисторы ОМЛТ-0,125 (R5 - СПЗ-1А), транзисторы КТ315 с любым буквенным индексом. В приборе можно применить любые низкочастотные или высокочастотные транзисторы структуры n-р-n или р-n-р. Естественно, что в приборе на транзисторах структуры р-n-р полярность источника питания должна быть другой. Как видно из рис. 2, прибор имеет отдельные выводы для подключения питания генераторов. Это позволяет при необходимости подавать на передатчик однотональный испытательный сигнал частотой соответственно 1550 и 2150 Гц. В этом случае для коммутации цепей питания генератора устройства необходимо установить переключатель на два направления и четыре положения ("Выключено", "1550 Гц", "2150 Гц", "Двухтональный сигнал"). Можно использовать и переключатель на одно направление, "развязав" точки переключения генераторов двумя диодами (любого типа). Для установки уровня выходного сигнала на выходе прибора необходимо включить переменный резистор сопротивлением 5... 15 кОм.
При настройке передатчика с помощью генератора к усилителю мощности подключают эквивалент антенны сигнал с которого подают на осциллограф. Уровень сигнала с двухтонального генератора устанавливают таким же, как и максимальный уровень сигнала, развиваемый микрофоном, с которым используется передатчик. Включив передатчик, подбирают частоту развертки осциллографа так, чтобы получилось устойчивое изображение осциллограммы на экране. После этого регулируют передающий тракт, добиваясь минимальных искажений огибающей ВЧ сигнала.
Описаный двухтональный генератор хорошо подходит для настройки трансивера