Самый сильный спутник. «Вояджер»: самый быстрый космический аппарат во Вселенной

В 20-м веке появились космические исследования с использованием искусственных спутников, космических зондов и пилотируемых космических кораблей. Люди проделали длинный путь с момента запуска первого искусственного спутника в 1957 году и отправили в космос несколько сверхмассивных вещей. Вот список семи самых больших объектов побывавших в космосе, посланных с Земли.

  1. Международная космическая станция (МКС)

Самая большая космическая станция, построенная человеком, МКС больше, чем футбольное поле, и имеет размеры 109 метров в длину, 73 метров в ширину и весит свыше 408 233 кг. Пилотируемая космическая станция, является орбитальной лабораторией, на которой проводятся различные научные и космические исследования, наблюдения и эксперименты, является единственным искусственным спутником, который можно увидеть невооруженным глазом с планеты Земля.

2. Космический телескоп «Хаббл»

Размером больше, чем два автобуса, с 1990 года космический телескоп Хаббл является самым крупным в своей категории. Длина космического телескопа более тринадцати метров, а весит он 12 247 кг.

3. Экологический спутник (Envisat)

Самый большой спутник, который находится на орбите Земли, мониторы Envisat в первую очередь контролируют атмосферу Земли. Десяти метровый спутник, весом приблизительно 8 210 кг, в настоящее время не работает, но все еще находится на орбите Земли.

4. Орбитальная станция «МИР»

Орбитальная станция «МИР», была Первой многомодульной обитаемой орбитальной станцией, отправленной в космос, размерами 33 метра в длину и 31 в ширину она весила 140 160 кг.

5. Сатурн V

Сатурн V, размером в 104 метра в высоту и весом 2,721,554 кг, был самой высокой, самой тяжелой и самой мощной ракетой. Сатурн V выполнил 13 миссий на своем временном отрезке, начиная с его запуска в 1967 году до 1973 года.

6. Skylab

Хотя Skylab и не такая большая как на МКС, она был первой космической станцией, которая была отправлена с Земли. Космическая лаборатория весила почти 77 111 килограмм и находилась на орбите Земли с 1973 по 1979 год.



19 января 2006 года земляне запустили зонд « » - автоматическую межпланетную станцию, которая должна будет изучить Плутон, Харон и объект в поясе Койпера. Полная миссия аппарата рассчитана на 15-17 лет. Окрестности Земли « » покинул с самой большой скоростью среди известных космических аппаратов - 16,26 км/с относительно Земли. Гелиоцентрическая скорость - 45 км/с, что позволило бы аппарату уйти из Солнечной системы без гравитационного маневра. Однако есть в этой Вселенной аппарат, созданный руками человека, который летит еще быстрее и равных ему в скорости пока нет.

Два космических зонда Voyager побили все рекорды по пройденным расстояниям. Они отправили нам фотографии Юпитера, Сатурна и Нептуна и продолжают двигаться прочь из Солнечной системы. 22 февраля 2014 года «Вояджер-1» находился на расстоянии около 19 миллиардов километров от Земли и по-прежнему отсылает нам данные - 10 часов они идут от зонда к нашей планете. Несколько лет назад , что «Вояджер-1» покинул Солнечную систему. Как зондам удается передавать данные так далеко?

Космический корабль «Вояджер» использует 23-ваттный радиопередатчик. Это больше, чем у обычного мобильного телефона, но в общем порядке вещей этот передатчик достаточно маломощный. Большие радиостанции на Земле передают десятки тысяч ватт, но все равно сигнал достаточно слабый.

Ключом к успеху, благодаря которому сигнал будет доходить вне зависимости от мощности радиопередатчика, стала комбинация трех вещей:

  1. Очень большие антенны.
  2. Направленные друг на друга антенны (земная и вояджеровская).
  3. Радиочастоты с малым количеством помех.

Антенны, которые использует «Вояджер», достаточно велики. Вы наверняка видели спутниковые тарелки у любителей телевидения. Обычно они 2-3 метра в диаметре. У антенны «Вояджера» диаметр 3,7 метра, и она передает данные, которые принимает 34-метровая антенна на Земле. Антенна «Вояджера» и антенна Земли направлены прямо друг на друга. Всенаправленная маленькая антенка вашего телефона и 34-метровый гигант - совершенно разные вещи.

Спутники «Вояджер» передают данные в 8-гигагерцевом диапазоне, на этой частоте мало помех. Антенна на Земле задействует мощный усилитель и получает сигнал. После этого отправляет сообщение обратно на зонд с помощью мощнейшего передатчика, чтобы «Вояджер» наверняка получил сообщение.

На передовой

«Вояджер-1» передает данные на Землю с 1977 года. Но члены команды, контролирующей миссию в Лаборатории реактивного движения NASA, не так давно обрадовали нас интересной новостью. 12 сентября 2013 года NASA подтвердило, что зонд вступил в область гелиопаузы, где солнечный ветер нашего Солнца уже не так силен, чтобы сталкиваться с солнечными ветрами соседних звезд. В этот момент «трехосный магнитометр» зафиксировал изменение магнитного поля, перпендикулярного направлению движения зонда. «Вояджер-1» стал первым объектом техногенного происхождения, покинувшим Солнечную систему.

Золотая Запись на борту «Вояджера»: 117 изображений Земли, приветствие на 54 языках, земные звуки

Циники - как и большинство астрономов, космологов и само NASA - говорят, что граница Солнечной системы определяется как точка, где объект перестает подвергаться воздействию солнечной гравитации. Но гравитация, как вы знаете, определяет Вселенную в огромных масштабах. И эта точка располагается на дистанции в 50 000 раз большей, чем расстояние от Солнца до Земли. «Вояджер-1» проехал 123 расстояния от Земли до Солнца (примерно 18 миллиардов километров). И ему понадобится еще 14 000 лет, чтобы при нынешней его скорости покинуть гравитационный захват Солнца.

Ничто не мешает программе «Вояджер» делать отличные наблюдения. «Вояджер-1» и его двойник, «Вояджер-2», вылетевший на 15 дней раньше, но опоздавший из-за экскурсии к Урану и Нептуну, обнаружили следы четырех газовых гигантов и множество странных астрономических явлений. И хотя «Вояджер-1» некоторое время оставался в пределах Солнечной системы, он вошел в зону, где заряженные частицы солнечного ветра сменятся пылью и другими материалами, заполняющими пространство между звездами.

За годы «Вояджеры» обнаружили ряд астрономических сюрпризов. Один из последних появился летом 2012 года, когда «Вояджер-1» обнаружил ранее неизвестное явление под названием «магнитное шоссе». В этом регионе, как показали инструменты на борту зонда, сталкиваются солнечное и межзвездное магнитные поля. Эдвард Стоун, главный по программе «Вояджера» с 1972 года, объяснил, что это происходит, когда частицы с низкой энергией внутри «гелиосферы» подменяются более высокоэнергетичными частицами из космоса.

Создатели зондов рассчитывали, что те будут достаточно крепкими и прочными, чтобы выдержать все капризы космоса. Особенно во время близкого подлета к Юпитеру и Сатурну, а также экскурсиям к Урану и Нептуну в исполнении «Вояджера-2». Поэтому когда в 1973 году «Пионер-10» измерил радиацию вокруг Урана и Нептуна и обнаружил, что она выше, чем ожидалось, команда Стоуна потратила 9 месяцев на замену и реконструкцию каждого элемента зонда, который может пострадать. Конечно, зонды были спроектированы с избыточным запасом прочности. Например, каждый из зондов несет по две копии трех отдельных компьютерных систем. Но пока что мало какие бортовые системы нуждаются в перезагрузке. Можно с уверенностью сказать, что Стоун по-отцовски гордится своим творением и его подвигами.

Забота, с которой зонды делали здесь, на Земле, тоже сыграла свою роль в успехе миссии. Когда основной и дополнительный приемники на «Вояджере-2» отказали спустя год от начала миссии, земная команда активировала резервную систему, которая работает и по сей день. В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.

Команда ученых регулярно обновляет систему управления для обеспечения оптимального использования ресурсов зондов во время их активной работы. Только за юпитерианскую фазу «Вояджера-1» это сделали 18 раз. Возьмем, к примеру, передачу данных. Когда «Вояджеры» облетали Юпитер и Сатурн, зонды были достаточно близки к Земле, чтобы послать несжатое изображение и другие данные на относительно высокой скорости передачи: 115 000 и 45 000 бит в секунду соответственно. Но поскольку сила сигнала изменяется обратно пропорционально квадрату расстояния между передатчиками, во время исследования Урана «Вояджер-2» передавал данные со скоростью 9000 бит/сек. У Нептуна число упало до 3000, тем самым уменьшив количество фотографий и данных, которые можно отправить домой.

Большинство резервных компьютеров включаются в работу, когда основная терпит крушение. Однако одна из вспомогательных систем зондов была активирована и работала совместно с основной. Это позволило отправлять 640-килобайтные изображения Урана с потерей качества после сжатия всего до 256 килобайт.

Как говорится, все гениальное - просто. Команда Стоуна экипировала зонды передовым аппаратным обеспечением под названием дешифратор Рида — Соломона. Устройство значительно снижает уровень погрешности, мешающий корректному прочтению сообщений в случае потерь отдельных битов. Первоначально «Вояджер» использовал старую и хорошо проверенную систему, которая отсылала один бит, «корректирующий ошибки», на каждый бит в сообщении. Дешифратор Рида — Соломона правил одним битом пять других. Забавно то, что в 1977 году способ дешифрации скорректированных данных по методу Рида — Соломона еще не существовал. К счастью, к тому времени, когда «Вояджер-2» достиг Урана в 1986 году, все было готово.

Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя миссия «Вояджера-1». 6 миллиардов километров

В настоящее время данные, которые приходят от «Вояджеров» на радиотелескопы по всему земному шару, идут со скоростью всего 160 бит в секунду. Это решение было принято сознательно, чтобы поддерживать постоянную скорость на протяжении всей миссии. Основные камеры были отключены после пролета последней планеты Солнечной системы, активными остались только несколько инструментов. Каждые шесть месяцев на протяжении 30 минут данные с 8-контактной цифровой ленты переносятся в сжатый архив на скорости 1400 бит в секунду.

Радиоизотопные термоэлектрические генераторы на основе плутония-238 будут поддерживать работу инструментов минимум до 2021 года. А к 2025 году после почти полувекового путешествия туда, где нет ничего человеческого, команда отключит зонды и будет сообщаться с ними в немного сентиментальной односторонней манере, чтобы «Вояджеры» верно шли своим курсом. И они будут лететь все дальше и дальше во тьму.

«Вояджер-1» несет достаточно ядерного топлива, чтобы продолжать служить во благо науки до 2025 года, а после смерти плыть по течению. По своей нынешней траектории зонд в конце концов должен оказаться в 1,5 световых годах от нас у звезды Camelopardalis в северном созвездии, которое выглядит чем-то средним между жирафом и верблюдом. Никто не знает, есть ли планеты возле этой звезды и обоснуют ли инопланетяне там резиденцию к моменту прибытия зонда.

Спутник Земли — это любой объект, который движется по искривленному пути вокруг планеты. Луна — это оригинальный, естественный спутник Земли, и есть много искусственных спутников, обычно на близкой орбите к Земле. Путь, по которому проходит спутник, — это орбита, которая иногда принимает форму круга.

Содержание:

Чтобы понять, почему спутники двигаются таким образом, мы должны вернуться к нашему другу Ньютону. существует между любыми двумя объектами во Вселенной. Если бы не эта сила, спутник, движущийся вблизи планеты, продолжал бы двигаться с той же скоростью и в том же направлении — по прямой. Однако этот прямолинейный инерционный путь спутника уравновешен сильным гравитационным притяжением, направленным к центру планеты.

Орбиты искусственных спутников Земли

Иногда орбита искусственного спутника выглядит как эллипс, раздавленный круг, который перемещается вокруг двух точек, известных как фокусы. Применяются те же основные законы движения, за исключением того, что планета находится в одном из фокусов. В результате, чистая сила, применяемая к спутнику, не равномерна по всей орбите, и скорость спутника постоянно изменяется. Он движется быстрее всего, когда он ближе всего к Земле — точка, известная как перигей — и самая медленная, когда она находится дальше всего от Земли — точка, известная как апогей.

Существует множество различных спутниковых орбит Земли. Те, которые получают наибольшее внимание — это геостационарные орбиты, поскольку они неподвижны над определенной точкой Земли.

Орбита, выбранная для искусственного спутника, зависит от ее применения. Например, для прямого вещательного телевидения используется геостационарная орбита. Многие спутники связи также используют геостационарную орбиту. Другие спутниковые системы, такие как спутниковые телефоны, могут использовать низкоземные орбиты.

Аналогичным образом спутниковые системы, используемые для навигации, такие как система Navstar или Global Positioning (GPS), занимают относительно низкую орбиту Земли. Есть также много других типов спутников. От метеорологических спутников, до спутников для исследований. Каждый из них будет иметь свой собственный тип орбиты в зависимости от его применения.

Фактическая выбранная орбита спутника Земли будет зависеть от факторов, включая ее функцию, и от области, в которой она должна служить. В некоторых случаях орбита спутника Земли может достигать 100 миль (160 км) для низкоорбитальной орбиты LEO, в то время как другие могут достигать более 22 000 миль (36000 км), как в случае GEO-орбитальной орбиты GEO.

Первый искусственный спутник земли

Первый искусственный спутник земли был запущен 4 октября 1957 года Советским Союзом и был первым искусственным спутником в истории.

Спутник 1 был первым из нескольких спутников, запущенных Советским Союзом в программе «Спутник», большинство из которых были успешными. Спутник 2 следовал за вторым спутником на орбите, а также первым, чтобы нести животное на борту, суку по имени Лайка. Первый провал потерпел Спутник 3.

Первый спутник земли имел приблизительную массу 83 кг, имел два радиопередатчика (20,007 и 40,002 МГц) и вращался на орбите Земли на расстоянии 938 км от своего апогея и 214 км на своем перигее. Анализ радиосигналов использовался для получения информации о концентрации электронов в ионосфере. Температура и давление были закодированы в течение длительности радиосигналов, которые он излучал, что указывает на то, что спутник не был перфорирован метеоритом.

Первый спутник земли представлял собой алюминиевую сферу диаметром 58 см, имеющую четыре длинные и тонкие антенны длиной от 2,4 до 2,9 м. Антенны выглядели как длинные усы. Космический аппарат получил информацию о плотности верхних слоев атмосферы и распространении радиоволн в ионосфере. Приборы и источники электрической энергии были размещены в капсуле, которая также включала радиопередатчики, работающие в 20.007 и 40.002 МГц (около 15 и 7,5 м на длине волны), выбросы были сделаны в альтернативных группах по 0, 3 с продолжительности. Заземление телеметрии включало данные о температуре внутри и на поверхности сферы.

Поскольку сфера была заполнена азотом под давлением, у «Спутника 1» появилась первая возможность обнаружить метеориты, хотя она и не обнаружила. Потеря давления внутри, из-за проникновения на внешнюю поверхность, была отражена в данных о температуре.

Виды искусственных спутников

Искусственные спутники бывают разных видов, форм, размеров и играют разные роли.


  • Спутники погоды помогают метеорологам прогнозировать погоду или видеть, что происходит на данный момент. Хорошим примером является геостационарный эксплуатационный экологический спутник (GOES). Эти спутники земли обычно содержат камеры, которые могут возвращать фотографии земной погоды, либо с фиксированных геостационарных положений, либо с полярных орбит.
  • Спутники связи позволяют передавать телефонные и информационные разговоры через спутник. Типичные спутники связи включают Telstar и Intelsat. Самой важной особенностью спутника связи является приемоответчик — радиоприемник, который принимает разговор на одной частоте, а затем усиливает его и повторно передает обратно на Землю на другой частоте. Спутник обычно содержит сотни или тысячи транспондеров. Коммуникационные спутники обычно геосинхронны.
  • Широковещательные спутники передают телевизионные сигналы от одной точки к другой (аналогично спутникам связи).
  • Научные спутники , такие как Космический телескоп Хаббл, выполняют всевозможные научные миссии. Они смотрят на все, от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают кораблям и самолетам перемещаться. Самыми известными являются спутники GPS NAVSTAR.
  • Спасательные спутники реагируют на сигналы радиопомех.
  • Спутники наблюдения Земли проверяют планету на предмет изменений во всем: от температуры, лесонасаждений, до покрытия ледяного покрова. Самыми известными являются серии Landsat.
  • Военные спутники Земли находятся на орбите, но большая часть фактической информации о положении остается секретной. Спутники могут включать ретрансляцию зашифрованной связи, ядерный мониторинг, наблюдение за передвижениями противника, раннее предупреждение о запуске ракет, подслушивание наземных радиолиний, радиолокационную визуализацию и фотографии (с использованием, по сути, больших телескопов, которые фотографируют интересные в военном отношении области).

Земля с искусственного спутника в реальном времени

Изображения земли с искусственного спутника, транслируемое в режиме реального времени НАСА с Международной космической станции. Изображения захватываются четырьмя камерами высокого разрешения, изолированными от низких температур, что позволяет нам чувствовать себя ближе к космосу, чем когда-либо.

Эксперимент (HDEV) на борту МКС был активирован 30 апреля 2014 года. Он установлен на внешнем грузовом механизме модуля Columbus Европейского космического агентства. Этот эксперимент включает несколько видеокамер высокой четкости, которые заключены в корпус.

Совет; поместите плеер в HD и полный экран. Бывают случаи, когда экран будет черным, это может быть по двум причинам: станция проходит через зону орбиты, где она находится ночью, орбита длится приблизительно 90 мин. Либо экран темнеет когда камеры меняются.

Сколько спутников на орбите Земли 2018?

Согласно индексу объектов, запускаемых в космическое пространство, которое ведет Управление Организации Объединенных Наций по вопросам космического пространства (UNOOSA), в настоящее время на орбите Земли около 4 256 спутников, что на 4,39% больше, чем в прошлом году.


221 спутник был запущен в 2015 году, что является вторым по величине за один год, хотя он ниже рекордного количества 240, запущенного в 2014 году. Увеличение числа спутников, вращающихся вокруг Земли, меньше, чем число, запущенное в прошлом году, поскольку спутники имеют ограниченную продолжительность жизни. Большие спутники связи от 15 и более лет, в то время как малые спутники, такие как CubeSat, могут рассчитывать только на срок службы 3-6 месяцев.

Сколько из этих орбитальных спутников Земли работает?

Союз ученых (UCS) уточняет, какие из этих орбитальных спутников работают, и это не так много, как вы думаете! В настоящее время существует только 1 419 оперативных спутников Земли- всего около одной трети из всего числа на орбите. Это означает, что вокруг планеты много бесполезного металла! Вот почему существует большой интерес со стороны компаний, которые смотрят, как они захватывают и возвращают космический мусор, с использованием таких методов, как космические сети, рогатки или солнечные паруса.

Что делают все эти спутники?

Согласно данным UCS, основными целями операционных спутников являются:

  • Связь — 713 спутника
  • Наблюдение Земли / наука — 374 спутника
  • Технологическая демонстрация / разработка с использованием 160 спутников
  • Навигация & GPS — 105 спутника
  • Космическая наука — 67 спутников

Следует отметить, что некоторые спутники имеют несколько целей.

Кому принадлежат спутники Земли?

Интересно отметить, что в базе данных UCS есть четыре основных типа пользователей, хотя принадлежность 17% спутников у нескольких пользователей.

  • 94 спутника, зарегистрированны гражданскими лицами: они как правило, являются учебными заведениями, хотя есть и другие национальные организации. 46% этих спутников имеют цель развитие технологий, таких как наука о Земле и космосе. Наблюдение составляют еще 43%.
  • 579 принадлежат коммерческим пользователям: коммерческие организации и государственные организации, которые хотят продавать собранные ими данные. 84% этих спутников сосредоточены на услугах связи и глобального позиционирования; из оставшихся 12% — спутники наблюдения Земли.
  • 401 спутник принадлежит государственными пользователями: в основном национальные космические организации, а также другие национальные и международные органы. 40% из них — спутники связи и глобального позиционирования; еще 38% сосредоточено на наблюдении Земли. Из оставшихся — развитие космической науки и техники составляет 12% и 10% соответственно.
  • 345 спутника принадлежат военным: здесь снова сосредоточена связь, наблюдения Земли и системы глобального позиционирования, причем 89% спутников имеют одну из этих трех целей.

Сколько спутников у стран

По данным UNOOSA около 65 стран запустили спутники, хотя в базе данных UCS имеется только 57 стран, зарегистрированных с использованием спутников, и некоторые спутники перечислены с совместными / многонациональными операторами. Самые большие:

  • США с 576 спутниками
  • Китай с 181 спутниками
  • Россия с 140 спутниками
  • Великобритания указана как имеющая 41 спутник, плюс участвует в дополнительных 36 спутниках, которыми располагает Европейское космическое агентство.

Помните, когда вы смотрите!
В следующий раз, когда вы посмотрите на ночное небо, помните, что между вами и звездами есть около двух миллионов килограммов металла, окружающего Землю!

Сколько лет существует практическая космонавтика, столько же насчитывают и наблюдения космических аппаратов на небе. Миллионы людей во всем мире видели ракету-носитель первого советского спутника, которая несколько суток находилась на орбите, сотни специально подготовленных наблюдателей - сам "шарик". С тех пор в околоземном пространстве оказалось более 25 тысяч только зарегистрированных объектов, и в течение одной ночи, даже без бинокля, каждый любитель астрономии может увидеть не один десяток искусственных спутников Земли (ИСЗ).

Обычно неяркие, они медленно ползут между звездами в разных направлениях. Яркость одних постоянна, у других периодически изменяется, третьи вспыхивают. Величественно проплывает орбитальный комплекс "Мир" - несомненный фаворит на российском небе. Периоды его вечерней и утренней видимости повторяются примерно через 60 суток, хотя этот интервал немного плавает со временем года, а яркость часто достигает - 2 m .

Отождествить увиденный спутник непросто: для этого нужно сделать одну-две точные засечки положения объекта в определенные моменты времени, а затем выбрать наиболее подходящего кандидата из списка, выданного специальной программой, в которую введены "свежие" орбитальные элементы восьми с лишним тысяч известных объектов. (Подразумеваю, что в вашем распоряжении есть персональный компьютер и выход в сеть Интернет. Без того и другого вы резко ограничены в своих возможностях.)

Описывать все прелести и все сложности наблюдения ИСЗ можно долго, но сейчас я расскажу только об одном классе спутников, необычайно яркие вспышки которых осенью 1997 года произвели настоящий фурор. Слово первооткрывателю, канадцу Брайану Хантеру: "Я проводил наблюдения вечером 16 августа 1997 года, когда мое внимание привлек очень яркий объект на северо-востоке. Трудно дать разумную оценку яркости, но он был намного ярче Юпитера. Величина -2 m - это только догадка типа: "Ух, какой яркий!". Он оставался очень ярким в течение нескольких секунд, затем ослабел... до 6-й величины". Хантер однозначно отождествил этот объект с одним из спутников серии "Иридиум".

На следующий день он отправил результаты наблюдений вспышки в электронную конференцию, связывающую наблюдателей ИСЗ, имеющих выход в компьютерную сеть Интернет. Понятно, что кратковременное увеличение яркости спутника на восемь величин привлекло большое внимание. В течение двух дней из США, Швеции, Франции и Бельгии пришли сообщения о еще нескольких схожих наблюдениях, а вскоре подобные отчеты пошли потоком.

Пришла, наверное, пора представить "героя" нашего рассказа. "Иридиум" - это система низкоорбитальной связи, включающая 72 спутника (66 рабочих и 6 резервных), расположенных на высоте 780 км в 6 орбитальных плоскостях с наклонением 86 градусов. Спутники запускаются на ракетах трех стран: американской "Дельта-2" (по пять за раз), нашем "Протоне",(по семь) и китайской CZ-2C (по два). Система еще не развернута полностью: первый запуск был осуществлен 5 мая 1997 года, а на 31 декабря того же года было выполнено девять пусков (выведено всего 46 спутников).

Корпус каждого спутника имеет форму трехгранной призмы с ребром основания около 1 м и длиной около 4 м. Аппарат летает в "вертикальном" положении. В верхней части крепятся две панели солнечных батарей, а от нижних ребер призмы отходят вверх и вбок три основные рабочие антенны. Нормальная звездная величина "Иридиума" не превышает обычно 7-й величины. Так почему же он вспыхивает, да еще так сильно?

После обработки первых двух десятков наблюдений стала понятна геометрия этого явления: источниками вспышек являются рабочие антенны - полированные прямоугольники размером 0.86x1.88 м, наклоненные под углом в 40 градусов к вертикальной оси аппарата. Антенна просто-напросто пускает солнечный зайчик! При этом если угол между отраженным солнечным лучом и направлением на наблюдателя меньше 5 градусов, то он видит вспышку средней яркости, а если меньше одного - чрезвычайно яркую вспышку.

Теоретический предел яркости вспышки "Иридиума" составляет примерно -7.5 m . В самом деле, антенна спутника, эквивалентная кругу диаметром 1.27 м и находящаяся в 800 км от наблюдателя, будет светить отраженным солнечным светом так же, как зеркало диаметром 237.5 км, находящееся на расстоянии от Земли до Солнца. Площадь такого зеркала составляет 2.91·10 -8 солнечной, что соответствует разнице в блеске в 18.8 m (видимая звездная величина Солнца, как известно, равна -26.2 m). Вспышка происходит обычно при фазовом угле спутник-наблюдатель-Солнце в интервале 125-150°, хотя иногда и при 90°. Общая продолжительность вспышки, видимой невооруженным взглядом, составляет 30-60 секунд. Наиболее же яркая часть вспышки длится несколько секунд.

К концу сентября прошлого года американцы Роб Мэтсон и Рэнди Джон написали две программы IridFlar и SkySat, предсказывающие вспышки на основании введенных в них орбитальных элементов спутников. Эти программы позволили заблаговременно готовиться к предстоящим вспышкам, в результате чего вскоре были получены прекрасные фотоснимки и видеозаписи этих явлений.

Не менее интересными оказались результаты визуальных наблюдений. Так, было подтверждено, что благодаря высокой яркости "Иридиумов" в момент вспышки, их можно увидеть и сквозь довольно густую облачность, и даже в дневное время! Но и это, оказывается, еще не все... Всем известно, что спутники видны только тогда, когда внизу у наблюдателя темно, но на высоте полета светит Солнце. Эта истина была непреложной 40 лет и перестала быть таковой 9 января 1998 года, когда американец Рон Ли наблюдал небольшую вспышку "Иридиума" светом, отраженным от... Луны!

Личные достижения автора заметки в наблюдениях "Иридиумов" пока невелики. 2 декабря прошлого года я наблюдал вспышку спутника примерно -4 m на высоте 28° на фоне заката прямо из окон редакции журнала "Новости космонавтики". Еще две вспышки величиной не ярче -З m удалось пронаблюдать в декабрьские холода. Автор пользовался для прогноза программой IridFlar, которая дает упорядоченный по времени прогноз вспышек для заданной точки, состоящий из времен начала, максимума и конца явления, прямого восхождения и склонения, азимута (от точки севера) и высоты, расчетной звездной величины, а также координат точки прямого отражения (места, где спутник будет иметь максимальную яркость). Нужно отметить, что фактическая величина может отличаться от прогнозируемой примерно на 1 m из-за отклонений в ориентации спутника и его антенны от номинальных и погрешности знания собственных координат.

Как часто происходят вспышки? Для ответа на этот вопрос я "прогнал" программу IridFlar на неделю - с 12 по 18 января для наблюдателя, находящегося в Москве. Получилось 27 просто ярких вспышек в интервале от З m до -З m , а также три супервспышки с величинами -5.0 m , -5.9 m и -8.3 m .

Столь высокая частота вспышек, без сомнения, может представлять собой очередную угрозу для астрономических наблюдений. Одним из первых к этой проблеме привлек общее внимание англичанин Дэвид Брайерли: "В то время как все мы радуемся новизне ярчайших вспышек, подумал ли кто-нибудь о давно страдающих астрономах? По мере того как будет запущено все больше "Иридиумов", вспышки будут все чаще и чаще. На наших глазах появляется "световое загрязнение" нового типа, и мне кажется, что кто-нибудь должен предупредить разработчиков "Иридиумов" о том, что они сделали с ночным небом".

Эта же тема была поднята американцем Полом Мэли на конгрессе Международной астронавтической федерации, проходившем прошлой осенью в Турине. Вступив в контакт с представителями компании "Моторола", являющейся изготовителем космических аппаратов "Иридиум", он описал им ситуацию со вспышками. Чтобы описание было нагляднее, Пол продемонстрировал собеседникам фотографии наиболее ярких вспышек, но, как и следовало ожидать, в ответ он услышал, что внесение в проект каких-либо изменений на этом этапе уже невозможно. "Ситуация такова, что "Иридиумы" уже наверху и останутся там очень и очень надолго", - такова была реакция представителей "Моторолы".

К счастью, эти вспышки вполне предсказуемы - в отличие от самолетов и прочих благ цивилизации. Однако следует помнить, что "Иридиум" может стать лишь первой ласточкой. Ведь на подходе уже новые низкоорбитальные системы связи: "Фаисат" - 26 спутников, "Орбкомм" - 28, "Глобалстар" - 48, "Селестри" - 63, "Скайбридж" - 64 и, наконец, "Теледезик", в которую входят сразу 384 спутника! И если вся эта готовящаяся к запуску армада будет вести себя аналогично вспыхивающим "Иридиумам", то положение может оказаться гораздо серьезнее.

Игорь Анатольевич Лисов - редактор журнала "Новости космонавтики", сотрудник компании "Видео-Космос ". Автор благодарит Брайана Хантера, Пола Мэли, Рэнди Джона, Брама и Криса Дорреманов, Тома Смита и Рона Ли за помощь в работе над статьей.