Спектральный анализатор звука. Анализаторы спектра звука и их применение

Работающий на базе устройства Quattro, ACE обеспечивает 32-разрядную с плавающей запятой цифровую обработку сигналов с частотой выборки до 204.8 кГц на всех каналах одновременно. Все входы подсоединяются к специализированному 24-разрядному сигма-дельта АЦП, а оба выхода имеют свои 24-разрядные ЦАПы. Входы и выходы защищены встроенными фильтрами защиты от наложения спектров. Вычислительные возможности обеспечивают в реальном времени динамический диапазон свыше 120 дБ в полосе до 94 кГц, при одновременном измерении и отображении 1600 линий на графиках передаточных функций, когерентности и всех других связанных измерений, а также с легкостью обеспечивают измерения с высоким разрешением до 25600 линий, масштабирование в реальном времени, измерение и отображение 3D графика "Водопада" и одновременную запись на диск. Вся обработка сигналов выполняется центральным сигнальным процессором, встроенным в Quattro, Ваш компьютер с Windows требуется только в качестве интерфейса оператора и для отображения данных.

Все возможности в одном устройстве

Купить анализатор спектра в наши дни не составляет проблем. Важно понимать, что имеются огромные различия между этими приборами, в частности, многие компании предлагают компактные приборы с различными названиями: анализатор спектра частот, анализатор спектра вибраций, анализатор частотного спектра, анализатор спектра звука и т.д. Как правило, все эти приборы оснащены экраном со шкалой, на которой испытатель смотрит показания. Такой анализатор спектра реального времени, как правило, не записывает измеренные данные и не имеет возможности проводить полноценный БПФ-анализ. Расшифровка спектра БПФ или алгоритм быстрого вычисления дискретного преобразования Фурье позволяет использовать анализатор сигналов как анализатор спектра.

Цифровые анализаторы спектра SIgnalCalc ACE объединяют в себе все возможности портативных анализаторов, при этом сохраняя компактность.

SignalCalc ACE позволяет проводить анализ виброакустических сигналов в реальном времени, используя БПФ, с возможность записи необработанных данных на жесткий диск компьютера для последующего тщательного постанализа.

Всеобъемлющие измерения

ACE Quattro выполняет анализ во временной, частотной, амплитудной и порядковой областях. Используйте синхронное усреднение для восстановления зашумленных повторяющихся событий. Сопоставляйте сигналы для обнаружения их сходства и совмещения по времени (корреляция). Используйте анализ спектра с БПФ (Быстрое Преобразование Фурье) для идентификации доминантных частот и уровней спектральных плотностей. Определяйте линейность систем через их передаточные функции, когерентность и реакции на импульсное возмущение. Измеряйте вероятностные функции и проверяйте нормальность ваших экспериментальных данных.
Высокая скорость вычислений позволяет Вам обрабатывать данные с перекрытием, что ускоряет усреднения. А также позволяет захватывать запуски и остановы машин, речевые сигнатуры и другие, быстро изменяющиеся временные/частотные события. Экран Вашего компьютера становится окном просмотра мгновенного действия, отображающим появление и содержание сигналов.

Анализаторы спектра, как орудие звукозаписывающего пролетариата

Возможность делать музыку на собственной домашней студии кружит голову многим творческим людям и заставляет проходить курс Вуза, сидя за домашним компьютером. Желание быстрее сделать свою демо - запись разбивается о монолит современной технологии. Синяки под глазами, невнятная речь, вечный эксперимент с программным обеспечением – признак того, что человек на правильном пути. Хорошо если есть опыт борьбы с километрами кабеля и регуляторами эффектов. В этом случае страдалец пропадет из семьи всего на полгода.…Недаром говорят “ Компьютер – лучшее противозачаточное средство”.

Что нужно для качественной обработки звука на компьютере? Хорошая звуковая карта, быстрый процессор, вместительный винчестер и свежий софт. Ну и конечно музыкальный вкус, помноженный на профессиональный опыт. Обработке звука программными симуляторами студийного оборудования может помочь важное, на мой взгляд, дополнение в виде анализаторов сигналов, поступающих на порты звуковой карты. Даже наличие высококачественного музыкального оборудование не спасет от путаницы с характеристиками конечного звукового продукта. А если работа ведётся на коммерческой основе, специалисты радио – студии, для которой предназначался ваш ролик, могут быстро развенчать ваше творение из за несоответствия принятым у них стандартам. На оригинальность идеи и уровень аранжировки внимания не обратят, не их это дело, а вот в частотных характеристиках покопаются с пристрастием. И перспектива долгой переделки, казалось готового ролика, а то и возврата гонорара, может стать вполне реальной.

Когда обращают внимание на динамику и гармоническую амплитуду звука? В основном в процессе обработки каждого инструмента в отдельности или группы взаимосвязанных партией инструментов. Хороший звукооператор должен иметь представление об общей картине тембральной палитры и в компромиссе с музыкантами находить лучшие звучание. А если нет опыта и спросить совета негде, предлагаю разжиться следующим программным обеспечением.

В своей работе я использую анализаторы звукового спектра PAS ANALIS CENTER и PINGUIN AUDIO METER. Замечательная черта этого софта в том, что при работе программы не только дают все характеристики звукового сигнала с входного и выходного портов, но и не конфликтуют при одновременной работе со звуковыми редакторами. То есть сообщения о том, что порт занят, не появляются. Сбор сведений о свойстве проходящего сэмплированного звука происходит внутри системы, а не с портов звуковой карты. При этом легко анализируется диапазон от 0,022 kHz / -60 dB до 22.050KHz / 0.00 dB.

Эти программы представляют собой фильтры, работающие по принципу осцилографа, одетого в интерфейс винды. Оценка оцифрованного звука происходит в реальном времени, не отнимая ресурсов системы у звуковых редакторов.В некоторых программах есть свои анализаторы спектра, но работают они только внутри своего редактора и часто только на выход. Такие модули бывают полезны когда нужно оценить участок обрабатываемого сэмпла, но для всего ролика приходиться сводить все треки в один и только после этого станет видна общая картина. Другое дело вышеупомянутые анализаторы. Даже миди звук можно просмотреть по спектру, не конвертируя в другой формат.

Интерфейс анализатора представляет собой активный дисплей с графической интерпретацией частотных полос. Он может иметь несколько представлений, таких как осциллограф, волновой анализ и анализ спектральный. В волновом режиме возможен скроллинг как постоянно бегущей волны сигнала. При спектральном анализе все гармоники делятся на отдельные колонки и при прохождении заданной частоты активизируются, показывая её характеристики. Достаточно один раз запустить звуковой файл и программа запомнит что, где и когда звучало. Этот расклад можно сохранить как файл со своим собственным расширением. При следующем запуске это музыкального ролика не нужно будет настраивать анализатор заново. Достаточно загрузить сохраненную установку. Тоже относиться и к расположению окон внутри программы.

На примере PAS ANALIS CENTER рассмотрим пункты в настройках анализаторов. Они стандартны и для других подобных программ. Если только вам не попадётся анализатор с китайским интерфейсом.

Окно Spectrum Analyzer

Представляет собой сетку частот с разметкой по частотам по горизонтали и dB или вольтам по вертикали. Последние два переключаются между собой нажатием Space Bar на клавиатуре.

    FFT length выбор формы фильтра и его диапазона обхвата.

    Scale точная настройка фильтра по гармоникам звукового файла.

    Displayнастройка графической оболчки окна анализатора. Функции включения и выключения сетки и поля пиковых показаний.

    Kind метод отображения гармоник в окне анализатора. Полезен при работе с роликами, разными по динамике. Так метод отображения плавной, широкой мелодии может быть неудобен из за того, что плавно настроенные гармоники будут дико скакать при запуске файла с рок– музыкой.

    Peaks при прослушивании звукового файла через анализатор, можно увидеть как преобладающие частоты выделяются белыми буквами, показывающими уровень и гармонику данного пика. Как это будет происходить и когда настраивается в этой вкладке.

    Decay Скорость и задержка графического изображений гармоник. Очень полезно, когда нужно тожно понять амплитуду звука. Тот же эффект достигается одним щелчком левой кнопки мыши в рабочей области. Появляется значение точки щелчка и изображение замирает. При отжатии кнопки всё продолжается в реальном времени.

Окно спектрограммы. Spectrogram Window

Отличие спектрограммы от спектрального анализа в том, что спектрограмма является отпечатком событий в звуковом файле и позволяет сравнивать гармоники на протяжении всего ролика. Спектральный анализ это только считывание гармоник в реальном времени, точное расположение которых запомнить невозможно. Цветные оттенки спектрограммы помогут найти лишние и недостающие частоты, и оценит весь файл целиком.

    FFT lenght выбор варианта представления сигнала и диапазона захвата.

    Scale настройка окна под звуковой файл. Настройки производятся более точно, чем в спектральном анализе.

    Displey настройка графического содержимого окна. Возможность менять цвет на противополжный???, ускорение прохождения спектра.

    Outfit выбор цветового режима. Очень полезно. Лично у меня глаза устали через две минуты.

Окно Oscilloscope / осциллограф

Как пользьзоватся осцилографом лучше узнать из специальной литературы или помучить на этот счёт знакомого электронщика. В описываемой программе этот прибор представлен только основными функциями, настройка которых приведена ниже.

      Scale Efect включение двух нижеследующих эфектов:

Peak представление в гармониках только пиковых значений

Split разделение по каналам цветом

В этом проекте аудио анализатор спектра в реальном времени реализуется с использованием 8-битного микроконтроллера PIC18F4550. Анализ спектра частот осуществляется оптимизированным 64-битным Быстрым Преобразованием Фурье (Fast Fourier Transformation, FFT, БПФ), написанном полностью на C. Выход с FFT отображается с помощью графического ЖК-дисплея 128x64 для визуализации звукового сигнала в реальном времени.

Для того чтобы выполнять вычисления FFT над аудио сигналом, необходимо подготовить аудио данные для PIC18F4550. МК имеет несколько аналогово-цифровых преобразователя (АЦП), которые могут быть использованы для измерения напряжения от 0В до 5В с 10-битной точностью (0-1023). Типичный сигнал линейного аудио выхода, является аналоговой волной с амплитудой 2В относительно 0В (т.е. сигнал переменного тока в диапазоне от +1В до -1В), как показано на следующей осциллограмме (с вывода W2 демо платы):

На картинке показана полноразмерная синусоидальная волна 5000 Гц, генерируемая с помощью ПК. Если бы мы подавали этот сигнал непосредственно на PIC, мы имели бы очень низкий диапазон входного напряжения (0-0.5В), и могли бы сделать выборку только верхней части сигнала, что сделало бы БПФ неверным.
Для того чтобы правильно сделать выборку сигнала, надо сделать две вещи. Во-первых, мы должны усилить сигнал, чтобы гарантировать, что мы можем максимально использовать диапазон 0-5В. Во-вторых, мы должны сдвинуть землю сигнала (0 вольт) на "виртуальную землю" 2.5В. Это позволит PIC сделать выборки и положительного, и отрицательного сигнала. Для этого на демо плате используется простой интегральный усилитель (LM386-1). Поскольку микросхема питается от источника питания 0В и 5В, она имеет удобный побочный эффект – смещение сигнала в середину необходимого диапазона. LM386-1 была использована т.к. это дешево и просто, однако вы можете использовать операционный усилитель с полным размахом входного и выходного сигнала для достижения этого с несколькими внешними элементами.

Следующая осциллограмма показывает сигнал с LM386-1 (для сигнала показанного выше), граничный диапазон напряжений установлен на 5 вольт (с контакта W3 демо платы):

Аппаратная часть смешивает линейный стерео вход, используя два резистора 10кОм, которые действуют как простой смеситель. Затем сигнал передается на LM386-1 через потенциометр 10кОм, который позволяет скорректировать сигнал. Далее выход с усилителя LM386-1 передается через простой RC фильтр, который обрезает сигнал примерно до 10 кГц. Затем полученный сигнал подается на контакт АЦП PIC18F4550. Фильтр 10 кГц действует как "сглаживающий" фильтр для БПФ, который не может правильно определить сигнал с частотой более чем 10 кГц. RC фильтр представляет собой очень простой тип фильтра (и очень неэффективный), но он был выбран, поскольку он легко изготавливается, и требует только 2 пассивных элемента. Обычно профессиональный анализатор спектра осуществляет сглаживание фильтром на 80% частоты Найквиста для БПФ (см. ниже), но, поскольку мы ограничены скоростью PIC, в этом проекте это невозможно сделать.

Демо плата также контролирует стандартный ЖК-дисплей с точечной матрицей 128x64, а также 3 светодиода (для тестирования преобразования звук-свет). Кроме того, есть 2 переключателя, позволяющие пользователю управлять выходом ЖК-дисплея в зависимости от того, что измеряется и как оно будет отображаться. Второе гнездо позволяет напрямую подать входной сигнал на другие аудио устройства, такие как наушники или колонки.

Вот принципиальная схема демо платы:

Плата является односторонней и используются только выводные компоненты для упрощения повторяемости. Я использовал PIC18F4550 для дополнительных выводов ввода/вывода, однако он может быть заменен на меньший PIC18F2550 который совместим по цоколевке. Схема достаточно проста для постройки на макетной плате, если вы хотите экспериментировать с трассировкой. Вот рисунок платы, который можно скачать ниже.

Прошивка

Прошивка полностью написана на C и может быть скачана ниже. Прошивка делится на 4 части:

Выборки АЦП

АЦП делает выборки уровня напряжения на RA0 каждые 50 мкс. Это дает нам частоту дискретизации 20 кГц (20.000 раз в секунду). Для БПФ важно, чтобы выборки брались равномерно и аккуратно. Для этого есть небольшая задержка в цикле выборки, который калибруется с помощью осциллографа на контакте W4 демо платы. Суммарная скважность прямоугольного сигнала должна быть ровно 50 мкс. АЦП делает выборки с полным 10-битным разрешением, а затем сдвигается в сторону младших разрядов при помощи 512, чтобы установить виртуальную землю входного сигнала обратно в ноль. Это значит, что полученные выборки находятся в диапазоне от -512 до +512 именно так, как требуется математике БПФ.

Маршрутизация АЦП занимает немногим более 64x50 Us = 32 мс (3200 мкс) во время выполнения для каждого цикла.

64-битная БПФ

Подпрограмма БПФ была взята из примера, приведенного в интернете (ссылки на исходный код можно найти в исходном коде). Математика БПФ является сложной и я не претендую на полное её понимание! Код был уменьшен до минимально необходимых команд и портирован для PIC18F. PIC18F4550 имеет аппаратную функцию умножения 8x8 в ALU процессора, поэтому я также оптимизировал расчеты, чтобы компилятор правильно использовал возможности чипа.

То, что 18F имеет аппаратный умножитель 8x8, действительно являться ключом к расчету БПФ таким маломощным чипом в реальном времени. Скорость цикла имеет преимущество даже по сравнению с 64-битными вычислениями в массиве.

Расчет абсолютной величины

Выход из БПФ 32 "сложных" числа, которые состоят из действительной и мнимой части, представленными ​​двумя массивами (вы должны прочитать о БПФ в Google, если вы хотите узнать больше). Для того, чтобы показать результат в осмысленном виде, необходимо рассчитать абсолютную величину комплексного числа, что осуществляется с помощью расчета Пифагора для вычисления расстояния до комплексного числа от начала координат 0. Это включает в себя вычисление корня из числа, что реализуется программным обеспечением очень быстро, используя целые SQRT() эквивалентны, поскольку любые операции с плавающей точкой будут слишком медленными.

Процедура расчета БПФ и абсолютной величины занимает примерно 70 мс (7000 мкс) для каждого цикла

Обновление ЖК-дисплея

ЖК-дисплей 128x64 должен обновлятья​​ как можно быстрее. Для этого я использовал очень простой алгоритм рисования диаграммы, который требует минимально возможного количества команд дисплею.

Два переключателя на плате позволяют пользователю переключаться между увеличением выхода x1 и x8 (так как в среднем частота музыки довольно низкая), а также между линейным выходом или логарифмическим выходом (на основе дБ). Это просто разные способы показа выхода в зависимости от того, хотите те ли вы точное представление об уровне частоты, или более приятный глазу выход.

Процедура обновления ЖК-дисплея занимает около 45 мс для каждого обновления.

Общая (средняя) скорость БПФ

Примерная скорость на дисплее анализатора спектра один кадр в 150 мс, в результате чего общая частота кадров около 6.5 кадров в секунду (или 10 кадров в секунду без ЖК-дисплея). Это можно легко улучшить сокращением необходимых блоков частот (что сократило бы отбор проб и время выполнения БПФ) или с помощью устройства отображения с более быстрым обновлением. Если вы хотели бы использовать БПФ для управления светодиодами светового устройства, можно легко сделать и то и то.

Блоки частот

Частота Найквиста в БПФ (самая высокая частота, которую он может обнаружить) составляет 10 кГц. 32 блока частот равномерно распределяются во всем диапазоне, однако, из-за работы подпрограммы БПФ, нельзя использовать нижние блоки. Это значит, что отображаемая частота для каждого блока выглядит следующим образом (в Гц):

  • 1: 312.5 - 625
  • 2: 625 - 937.5
  • 3: 937.5 - 1250
  • 4: 1250 - 1562.5
  • 5: 1562.5 - 1875
  • 6: 1875 - 2187.5
  • 7: 2187.5 - 2500
  • 8: 2500 - 2812.5
  • 9: 2812.5 - 3125
  • 10: 3125 - 3437.5
  • 11: 3437.5 - 3750
  • 12: 3750 - 4062.5
  • 13: 4062.5 - 4375
  • 14: 4375 - 4687.5
  • 15: 4687.5 - 5000
  • 16: 5000 - 5312.5
  • 17: 5312.5 - 5625
  • 18: 5625 - 5937.5
  • 19: 5937.5 - 6250
  • 20: 6250 - 6562.5
  • 21: 6562.5 - 6875
  • 22: 6875 - 7187.5
  • 23: 7187.5 - 7500
  • 24: 7500 - 7812.5
  • 25: 7812.5 - 8125
  • 26: 8125 - 8437.5
  • 27: 8437.5 - 8750
  • 28: 8750 - 9062.5
  • 29: 9062.5 - 9375
  • 30: 9375 - 9687.5
  • 31: 9687.5 - 10000

Заключение

Я не сомневаюсь, что программное и аппаратное обеспечение может быть улучшено. Я не эксперт в БПФ, но я хотел бы услышать любые идеи о том, как ускорить этот процесс. Кроме того, сглаживающий фильтр на демо плате не так уж эффективен и может быть легко заменен на фильтр на основе ОУ. Я просто не хочу использовать больше, чем минимально необходимое для работы аппаратное обеспечение.

Также я хотел бы сказать отдельное спасибо моему хорошему другу Richard Stagg, без его математической настойчивости этот проект, наверное, никогда не был бы завершен!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК PIC 8-бит

PIC18F4550

1 В блокнот
U2 Аудио усилитель

LM386

1 В блокнот
U3 Линейный регулятор

LM7805CT

1 В блокнот
D1 Выпрямительный диод

1N4001

1 В блокнот
С1 Конденсатор 1 нФ 1 В блокнот
С2 Конденсатор 47 нФ 1 В блокнот
С3-С5, C7 Конденсатор 100 нФ 3 В блокнот
С6 Электролитический конденсатор 10 мкФ 1 В блокнот
R1, R2, R5, R7, R9, R10 Резистор

10 кОм

1

Спектроанализаторы значительно упрощают процесс сведения, позволяя делать более обьективную, подкреплённую визуально эквализацию. Чем может быть полезен анализатор спектра ? Чем они различаются? Где скачать спектроанализатор? Как обычно, обо всём по порядку.

Для начала, небольшой обзор и сравнение vst анализаторов, которыми я пользовался.

Прекрасный, динамичный 1 анализатор. Это первый мой vst, и с ним я проработал долгое время, пока не появилась потребность в более точном приборе. Дело в том, что минимальный шаг измерения PAZ Analyzer’а в низкочастотной области (кнопка «LF res.») равен 10Гц, и этого катастрофически нехватало. В поисках бесплатной альтернативы, я наткнулся на

Простой и точный анализатор от отечественного производителя. В нём достаточно настроек, чтобы отображать данные так же, как и PAZ Analyzer, но есть существенный (для меня, по крайней мере) недостаток, из-за которого, я перестал им пользоваться: при высоких значениях FFT 2 , интерфейс жутко тормозит, прямо слайд-шоу…

Этот анализатор я нашёл совершенно случайно, перейдя по чьей то рекомендательной ссылке. Он клёвый При относительно невысокой стоимости, имеет демо-версию без ограничения по времени пользования или функционалу (единственное ограничение заключается в том, что в демо-версии программа переключается в режим bypass на 5 секунд, через каждые 40 секунд работы). Плюс, красивый интерфейс с быстрым обновлением кривой, высокую точность и море функций, вплоть до возможности высчитывать разницу в АЧХ нескольких сигналов.

Выбор сделан, но оставался один момент, который меня беспокоил. Я привык к анализатору PAZ и его отображению АЧХ. SPAN и FreqAnalyst же, отображали кривую… как то не так. Анализатор от Waves «видел» большинство студийных миксов как горизонтальную прямую, но его «конкуренты» - почему то с подъёмом в низкочастотной области и завалом на высоких частотах, хотя на слух этого не воспринималось. Кому (чему) верить?

Разобрался я достаточно быстро, решив протестировать анализаторы шумом - сигналом, занимающим всю полосу частот. В поисках звуковых сэмплов шума, я наткнулся на , в которой упоминалось о цветах шума. Как же я сразу не догадался! PAZ имеет логарифмическую характеристику отображения АЧХ, что соответствует горизонтальной прямой при измерении розового шума. Анализаторы SPAN и FreqAnalyst по умолчанию «откалиброваны» белым шумом. Исправить это легко, благодаря регулятору Slope, изменяющему наклон кривой АЧХ:

Итак, с инструментами для анализа и их особенностями мы более-менее определились. Что дальше?

Работа со спектроанализатором

Спектральные анализаторы широко используются в электронной промышленности для анализа частотного спектра радиочастотных и аудиосигналов. Рассматривая спектр сигнала, он может выявлять элементы сигнала и производительность создающей их схемы, которая была бы невозможна с использованием других средств.

Спектральные анализаторы способны выполнять самые разнообразные измерения, а это означает, что они являются неоценимым инструментом для лабораторий разработки и испытаний радиочастотных технологий, а также имеют много применений для полевых услуг специалиста.

Анализаторы спектра сигналов определяют величину входного сигнала в зависимости от частоты в полном диапазоне частот прибора. Основное назначение - измерять мощность спектра неизвестных и известных сигналов. Входной сигнал, который измеряет анализатор спектра, является электрическим. Несмотря на это, спектральные составы других сигналов, таких как волны акустического давления и оптические световые волны, можно рассматривать с помощью соответствующего преобразователя. Существуют также анализаторы оптического спектра, которые используют прямые оптические методы, такие как монохроматор для проведения измерений.

Анализируя спектры электрических сигналов, можно наблюдать доминирующую частоту, мощность, искажения, гармоники, ширину полосы и другие спектральные компоненты сигнала, которые нелегко обнаружить в волновых формах во временной области. Эти параметры полезны для характеристики электронных устройств, таких как беспроводные передатчики.

Дисплей анализатора спектра звука имеет частоту на горизонтальной оси и амплитуду, отображаемую на вертикальной оси. Для случайного наблюдателя анализатор спектра выглядит как осциллограф, и на самом деле некоторые лабораторные приборы могут функционировать либо как осциллограф, либо анализатор спектра.

Преимущества анализаторов супергетеродинного спектра

Анализатор супергетеродинного спектра имеет преимущества. Устройство способно работать в широком диапазоне частот. Используя принцип супергетеродинного анализа, этот анализатор спектра способен работать на очень высоких частотах - многие расширяют зону покрытия до многих ГГц.

Широкая полоса пропускания: опять же в результате принципа супергетеродина этот тип анализатора спектра может иметь очень широкие интервалы сканирования. Они могут распространяться на несколько ГГц в одном сканировании.

Не так дорого, как другие технологии анализатора спектра. Хотя спектральные анализаторы всех типов дороги, модели FFT более дороги для такого же уровня производительности в результате высокопроизводительных АЦП в передней части. Это означает, что для того же уровня производительности базы, супергетеродин или анализатор развертки спектра дешевле.