Что такое коммутатор lan. Коммутаторы в локальной сети

Выбор маршрутизатора, который следует использовать, определяется интерфейсами Ethernet, которые соответствуют технологии коммутаторов в центре LAN. Важно отметить, что маршрутизаторы предлагают множество служб и функций для LAN.

У каждой LAN есть маршрутизатор, используемый в качестве шлюза для соединения LAN с другими сетями. В LAN есть один или более концентраторов или коммутаторов, чтобы соединять конечные устройства с LAN.

Маршрутизаторы являются основными устройствами, используемыми, чтобы соединять сети. Каждый порт на маршрутизаторе соединяется с различной сетью и направляет пакеты между сетями. Маршрутизаторы могут разбивать широковещательные домены и домены коллизий.

Маршрутизаторы также используются, чтобы соединять сети, которые используют различные технологии. У них могут быть и LAN, и WAN интерфейсы.

Интерфейсы LAN маршрутизаторов позволяют им соединяться с носителями LAN. Обычно это кабельные соединения UTP, но могут быть добавлены модули для того, чтобы использовать волоконную оптику . В зависимости от серии или модели маршрутизаторов, они могут иметь несколько типов интерфейсов для кабельных соединений WAN и LAN.

Устройства Интрасети

Чтобы создать LAN, мы должны выбрать соответствующие устройства, чтобы соединить конечные узлы с сетью. Два наиболее распространенных используемых устройства - концентраторы и коммутаторы.

Концентратор

Концентратор получает сигнал, регенерирует его и отправляет на все порты. Использование концентраторов создает логическую шину. Это означает, что LAN использует носитель в режиме мультидоступа. Порты используют подход совместного использования полосы пропускания, что часто приводит к уменьшению производительности в LAN из-за коллизий и восстановления. Хотя можно соединить несколько концентраторов, все равно останется единственный домен коллизий.

Концентраторы менее дороги, чем коммутаторы. Концентратор обычно выбирается в качестве посреднического устройства для очень небольшой LAN, которая имеет низкие требования к пропускной способности, или при ограниченных финансах.

Коммутатор

Коммутатор принимает кадр и регенерирует каждый бит кадра на соответствующий порт назначения. Это устройство используется, чтобы сегментировать сеть на несколько доменов коллизий. В отличие от концентратора, коммутатор уменьшает количество коллизий в LAN. Каждый порт на коммутаторе создает отдельный домен коллизий. Это создает логическую топологию точка-точка для устройства на каждом порту. Кроме того, коммутатор предоставляет выделенную полосу пропускания на каждом порту, что может увеличить производительность LAN. LAN-коммутатор может также использоваться, чтобы соединять сегменты сети с различными скоростями.

Вообще, для подключения устройств к LAN выбираются коммутаторы. Хотя коммутатор более дорог, чем концентратор, его улучшенная производительность и надежность делают его экономически выгодным.

Есть целый спектр доступных коммутаторов со множеством функций, которые позволяют соединить множество компьютеров в типичную установку LAN предприятия.

Как выбрать коммутатор при существующеи разнообразии? Функциональность современных моделей очень разная. Можно приобрести как простейший неуправляемый свитч, так и многофункциональный управляемый коммутатор, немногим отличающийся от полноценного роутера. В качестве примера последнего можно привести Mikrotik CRS125-24G-1S-2HND-IN из новой линейки Cloud Router Switch. Соответственно, и цена таких моделей будет гораздо выше.

Поэтому при выборе коммутатора прежде всего нужно определиться, какие из функций и параметров современных свитчей вам необходимы, а за какие не стоит переплачивать. Но сначала - немного теории.

Виды коммутаторов

Однако если раньше управляемые коммутаторы отличались от неуправляемых, в том числе, более широким набором функций, то сейчас разница может быть только в возможности или невозможности удаленного управления устройством. В остальном - даже в самые простые модели производители добавляют дополнительный функционал, частенько повышая при этом их стоимость.

Поэтому на данный момент более информативна классификация коммутаторов по уровням.

Уровни коммутаторов

Для того, чтобы выбрать коммутатор, оптимально подходящий под наши нужды, нужно знать его уровень. Этот параметр определяется на основании того, какую сетевую модель OSI (передачи данных) использует устройство.

  • Устройства первого уровня , использующие физическую передачу данных, уже практически исчезли с рынка. Если кто-то еще помнит хабы - то это как раз пример физического уровня, когда информация передается сплошным потоком.
  • Уровень 2 . К нему относятся практически все неуправляемые коммутаторы. Используется так называемая канальная сетевая модель. Устройства разделяют поступающую информацию на отдельные пакеты (кадры, фреймы), проверяют их и направляют конкретному девайсу-получателю. Основа распределения информации в коммутаторах второго уровня - MAC-адреса. Из них свитч составляет таблицу адресации, запоминая, какому порту какой MAC-адрес соответствует. IP-адреса они не понимают.

  • Уровень 3 . Выбрав такой коммутатор, вы получаете устройство, которое уже работает с IP-адресами. А также поддерживает множество других возможностей работы с данными: преобразование логических адресов в физические, сетевое протоколы IPv4, IPv6, IPX и т.д., соединения pptp, pppoe, vpn и другие. На третьем, сетевом уровне передачи данных, работают практически все маршрутизаторы и наиболее "продвинутая" часть коммутаторов.

  • Уровень 4 . Сетевая модель OSI, которая здесь используется, называется транспортной . Даже не все роутеры выпускаются с поддержкой этой модели. Распределение трафика происходит на интеллектуальном уровне - устройство умеет работать с приложениями и на основании заголовков пакетов с данными направлять их по нужному адресу. Кроме того, протоколы транспортного уровня, к примеру TCP, гарантируют надежность доставки пакетов, сохранение определенной последовательности их передачи и умеют оптимизировать трафик.

Выбираем коммутатор - читаем характеристики

Как выбрать коммутатор по параметрам и функциям? Рассмотрим, что подразумевается под некоторыми из часто встречающихся обозначений в характеристиках. К базовым параметрам относятся:

Количество портов . Их число варьируется от 5 до 48. При выборе коммутатора лучше предусмотреть запас для дальнейшего расширения сети.

Базовая скорость передачи данных . Чаще всего мы видим обозначение 10/100/1000 Мбит/сек - скорости, которые поддерживает каждый порт устройства. Т. е. выбранный коммутатор может работать со скоростью 10 Мбит/сек, 100 Мбит/сек или 1000 Мбит/сек. Достаточно много моделей, которые оснащены и гигабитными, и портами 10/100 Мб/сек. Большинство современных коммутаторов работают по стандарту IEEE 802.3 Nway, автоматически определяя скорость портов.

Пропускная способность и внутренняя пропускная способность. Первая величина, называемая еще коммутационной матрицей - это максимальный объем трафика, который может быть пропущен через коммутатор в единицу времени. Вычисляется очень просто: кол-во портов х скорость порта х 2 (дуплекс). К примеру, 8-портовый гигабитный коммутатор имеет пропускную способность в 16 Гбит/сек.
Внутренняя пропускная способность обычно обозначается производителем и нужна только для сравнения с предыдущей величиной. Если заявленная внутренняя пропускная способность меньше максимальной - устройство будет плохо справляться с большими нагрузками, тормозить и зависать.

Автоматическое определение MDI/MDI-X . Это автоопределение и поддержка обоих стандартов, по которым была обжата витая пара, без необходимости ручного контроля соединений.

Слоты расширения . Возможность подключения дополнительных интерфейсов, например, оптических.

Размер таблицы MAC-адресов . Для выбора коммутатора важно заранее просчитать необходимый вам размер таблицы, желательно с учетом будущего расширения сети. Если записей в таблице не будет хватать, коммутатор будет записывать новые поверх старых, и это будет тормозить передачу данных.

Форм-фактор . Коммутаторы выпускаются в двух разновидностях корпуса: настольный/настенный вариант размещения и для стойки. В последнем случае принят стандартный размер устройства -19-дюймов. Специальные ушки для крепления в стойку могут быть съемными.

Выбираем коммутатор с нужными нам функциями для работы с трафиком

Управление потоком (Flow Control , протокол IEEE 802.3x). Предусматривает согласование приема-отправки данных между отправляющим устройством и коммутатором при высоких нагрузках, во избежание потерь пакетов. Функция поддерживается почти каждым свитчом.

Jumbo Frame - увеличенные пакеты. Применяется для скоростей от 1 гбит/сек и выше, позволяет ускорить передачу данных за счет уменьшения количества пакетов и времени на их обработку. Функция есть почти в каждом коммутаторе.

Режимы Full-duplex и Half-duplex . Практически все современные свитчи поддерживают автосогласование между полудуплексом и полным дуплексом (передача данных только в одну сторону, передача данных в обе стороны одновременно) во избежание проблем в сети.

Приоритезация трафика (стандарт IEEE 802.1p) - устройство умеет определять более важные пакеты (например, VoIP) и отправлять их в первую очередь. Выбирая коммутатор для сети, где весомую часть трафика будет составлять аудио или видео, стоит обратить внимание на эту функцию

Поддержка VLAN (стандарт IEEE 802.1q ). VLAN - удобное средство для разграничения отдельных участков: внутренней сети предприятия и сети общего пользования для клиентов, различных отделов и т.п.

Для обеспечения безопасности внутри сети, контроля или проверки производительности сетевого оборудования, может использоваться зеркалирование (дублирование трафика). К примеру, вся поступающая информация отправляется на один порт для проверки или записи определенным ПО.

Перенаправление портов . Эта функция вам может понадобиться для развертывания сервера с доступом в интернет, или для онлайн-игр.

Защита от "петель" - функции STP и LBD . Особенно важны при выборе неуправляемых коммутаторов. В них обнаружить образовавшуюся петлю - закольцованный участок сети, причину многих глюков и зависаний - практически невозможно. LoopBack Detection автоматически блокирует порт, на котором произошло образование петли. Протокол STP (IEEE 802.1d) и его более совершенные потомки - IEEE 802.1w, IEEE 802.1s - действуют немного иначе, оптимизируя сеть под древовидную структуру. Изначально в структуре предусмотрены запасные, закольцованные ветви. По умолчанию они отключены, и коммутатор запускает их только тогда, когда происходит разрыв связи на какой-то основной линии.

Агрегирование каналов (IEEE 802.3ad) . Повышает пропускную способность канала, объединяя несколько физических портов в один логический. Максимальная пропускная способность по стандарту - 8 Гбит/сек.

Стекирование . Каждый производитель использует свои собственные разработки стекирования, но в общем эта функция обозначает виртуальное объединение нескольких коммутаторов в одно логическое устройство. Цель стекирования - получить большее количество портов, чем это возможно при использовании физического свитча.

Функции коммутатора для мониторинга и диагностики неисправностей

Многие коммутаторы определяют неисправность кабельного соединения, обычно при включении устройства, а также вид неисправности - обрыв жилы, короткое замыкание и т.п. Например, в D-Link предусмотрены специальные индикаторы на корпусе:

Защита от вирусного трафика (Safeguard Engine) . Методика позволяет повысить стабильность работы и защитить центральный процессор от перегрузок "мусорным" трафиком вирусных программ.

Функции электропитания

Энергосбережение. Как выбрать коммутатор, который будет экономить вам электроэнергию? Обращайте внимани е на наличие функций энергосбережения. Некоторые производители, например D-Link, выпускают коммутаторы с регулировкой потребления электроэнергии. Например, умный свитч мониторит подключенные к нему устройства, и если в данный момент какое-то из них не работает, соответствующий порт переводится в "спящий режим".

Power over Ethernet (PoE, стандарт IEEE 802.af) . Коммутатор с использованием этой технологии может питать подключенные к нему устройства по витой паре.

Встроенная грозозащита . Очень нужная функция, однако надо помнить, что такие коммутаторы должны быть заземлены, иначе защита не будет действовать.


сайт

Вопросы построения локальных сетей представляются пользователям-неспециалистам весьма сложными из-за обширного терминологического словаря. Хабы и свитчи рисуются в воображении сложным оборудованием, напоминающим телефонные АТС, и создание локальной домашней сети становится поводом для обращения к специалистам. На самом же деле не так страшен свитч, как его название: оба устройства представляют собой элементарные узлы сети, обладающие минимальной функциональностью, не требующие знаний по установке и эксплуатации и вполне доступные каждому.

Определение

Хаб — сетевой концентратор, предназначенный для объединения компьютеров в единую локальную сеть посредством подключения Ethernet-кабелей.

Свитч (switch — переключатель) — сетевой коммутатор, предназначенный для объединения в локальную сеть нескольких компьютеров через Ethernet-интерфейс.

Сравнение

Как видим из определения, разница между хабом и свитчем связана с видом устройств: концентратор и коммутатор. Несмотря на одну задачу — организацию локальной сети посредством Ethernet — подходят к ее решению устройства по-разному. Хаб представляет собой простейший разветвитель, обеспечивающий прямое соединение между клиентами сети. Свитч — более “умное” устройство, распределяющее пакеты данных между клиентами в соответствии с запросом.

Хаб, получая сигнал от одного узла, передает его всем подключенным устройствам, и прием целиком зависит от адресата: компьютер должен сам распознать, ему ли предназначен пакет. Естественно, ответ предполагает ту же самую схему. Сигнал тычется во все сегменты сети, пока не найдет тот, который его примет. Это обстоятельство снижает пропускную способность сети (и скорость обмена данными, соответственно). Свитч, получая пакет данных от компьютера, направляет его именно по тому адресу, который был задан отправителем, избавляя сеть от нагрузки. Сеть, организованная посредством коммутатора, считается более безопасной: обмен трафиком происходит напрямую между двумя клиентами, и другие не могут обрабатывать сигнал, предназначенный не им. В отличие от хаба, свитч обеспечивает высокую пропускную способность созданной сети.

Хаб Logitec LAN-SW/PS

Свитч требует правильной настройки сетевой карты компьютера-клиента: IP адрес и маска подсети должны друг другу соответствовать (маска подсети указывает часть IP-адреса как адреса сети, а другую часть — как адреса клиента). Хаб настроек не требует, потому как работает на физическом уровне сетевой модели OSI, транслируя сигнал. Свитч работает на уровне канальном, осуществляя обмен пакетами данных. Еще одна особенность хаба — уравнивание узлов в отношении скорости передачи данных, ориентируясь на самые низкие показатели.


Свитч COMPEX PS2208B

Выводы сайт

  1. Хаб — концентратор, свитч — коммутатор.
  2. Хаб устройство простейшее, свитч — более “интеллектуальное”.
  3. Хаб передает сигнал всем клиентам сети, свитч — только адресату.
  4. Производительность сети, организованной через свитч, выше.
  5. Свитч обеспечивает более высокий уровень безопасности передачи данных.
  6. Хаб работает на физическом уровне сетевой модели OSI, свитч — на канальном.
  7. Свитч требует правильной настройки сетевых карт клиентов сети.

Коммутатор одно из важнейших устройств использующихся при построении локальной сети. В этой статье мы поговорим какими коммутаторы бывают и остановимся на важных характеристиках, которые нужно учитывать при выборе коммутатора локальной сети.

Для начала рассмотрим общую структурную схему, чтобы понимать какое место коммутатор занимает в локальной сети предприятия.

На рисунке выше показанна наиболее распространенная структурная схема небольшой локальной сети. Как правило в таких локальных сетях используются коммутаторы доступа.

Коммутаторы доступа непосредственно подключены к конечным пользователям, предоставляя им доступ к ресурсам локальной сети.

Однако в крупных локальных сетях коммутаторы выполняют следующие функции:


Уровень доступа сети . Как было сказано выше коммутаторы доступа предоставляют точки подключения устройств конечного пользователя. В крупных локальных сетях фреймы коммутаторов доступа не взаимодействуют друг с другом, а передаются через коммутаторы распределения.

Уровень распределения . Коммутаторы данного уровня пересылают трафик между коммутаторами доступа, но при этом не взаимодействуют с конечными пользователями.

Уровень ядра системы . Устройства данного типа объединяют каналы передачи данных от коммутаторов уровня распределения в крупных территориальных локальных сетях и обеспечивают очень высокую скорость коммутации потоков данных.

Коммутаторы бывают:

Неуправляемые коммутаторы . Это обычные автономные устройства в локальной сети, которые управляют передачей данных самостоятельно и не имеют возможности дополнительной настройки. В виду простоты установки и небольшой цены получили широкое распространение при монтаже в домашних условиях и малом бизнесе.

Управляемые коммутаторы . Более продвинутые и дорогие устройства. Позволяют администратору сети самостоятельно настраивать их под заданные задачи.

Управляемые коммутаторы могут настраиваться одним из следующих способов:

Через консольный порт Через WEB интерфейс

Через Telnet Через протокол SNMP

Через SSH

Уровни коммутаторов


Все коммутаторы можно разделить на уровни модели OSI . Чем этот уровень выше тем большими возможностями коммутатор обладает, однако и стоимость его будет значительно выше.

Коммутаторы 1 уровня (layer 1) . К данному уровню можно отнести хабы, повторители и другие устройства, работающие на физическом уровне. Эти устройства были на заре развития интернета и в настоящее время в локальной сети не используются. Получив сигнал устройство данного типа, просто передает его далее, во все порты, кроме порта отправителя

Коммутаторы 2 уровня (layaer 2) . К данному уровню относятся неуправляемые и часть управляемых коммутаторов (switch ) работающих на канальном уровне модели OSI . Коммутаторы второго уровня работают с фреймами – кадрами: потоком данных разбитых на порции. Получив фрейм коммутатор уровня 2 вычитывает из фрейма адрес отправителя и заносит его в свою таблицу MAC адресов, сопоставляя этот адрес порту на котором он этот фрейм получил. Благодаря такому подходу коммутаторы второго уровня пересылают данные только на порт получателя, не создавая при этом избыточного трафика по остальным портам. Коммутаторы второго уровня не понимают IP адресов расположенных на третьем сетевом уровне модели OSI и работают только на канальном уровне.

Коммутаторы второго уровня поддерживают такие наиболее распространенные протоколы как:

IEEE 802.1 q или VLAN виртуальные локальные сети. Данный протокол, позволяет в рамках одной физической сети создавать отдельные логические сети.


Например устройства подключенные к одному коммутатору, но находящиеся в разных VLAN не увидят друг друга и передавать данные смогут только в своем широковещательном домене (устройствам из той же VLAN). Между собой компьютеры на рисунке выше смогут передавать данные при помощи устройства работающего на третьем уровне с IP адресами: маршрутизатором.

IEEE 802.1p (Priority tags ). Этот протокол изначально присутствует в протоколе IEEE 802.1 q и представляет собой 3 битное поле от 0 до 7. Данный протокол позволяет маркировать и отсортировывать весь трафик по степени важности выставляя приоритеты (максимальный приоритет 7). Фреймы с большим приоритетом будут пересылаться в первую очередь.

IEEE 802.1d Spanning tree protocol (STP). Данный протокол выстраивает локальную сеть в виде древовидной структуры, чтобы избежать закольцовывания сети и предотвратить образования сетевого шторма.


Допустим монтаж локальной сети выполнен в виде кольца для повышения отказоустойчивости системы. Коммутатор с наибольшим приоритетом в сети выбирается корневым (Root). В примере приведенном выше SW3 является корневым. Не углубляясь в алгоритмы выполнения протокола, коммутаторы вычисляют путь с максимальной ценой и блокируют его. Например в нашем случае кротчайший путь от SW3 до SW1 и SW2 будет через собственные выделенные интерфейсы (DP) Fa 0/1 и Fa 0/2 . В этом случае цена пути по умолчанию для интерфейса 100 Мбит/c будет 19. Интерфейс Fa 0/1 коммутатора SW1 локальной сети блокируется потому, чо общая цена пути будет складываться из двух переходов между 100 Мбит/с интерфейсами 19+19=38.

Если рабочий маршрут будет поврежден, коммутаторы выполнят пересчет пути и разблокируют данный порт

IEEE 802.1w Rapid spanning tree protocol (RSTP). Усовершенствованный стандарт 802.1 d , который обладает более высокой устойчивостью и меньшим временем восстановления линии связи.

IEEE 802.1s Multiple spanning tree protocol. Последняя версия, учитывающая все недостатки протоколов STP и RSTP .

IEEE 802.3ad Link aggregation for parallel link. Данный протокол позволяет объединять порты в группы. Суммарная скорость данного порта агрегации будет складываться из суммы скоростей каждого порта в ней. Максимальная скорость определена стандартом IEEE 802.3ad и составляет 8 Гбит/сек.


Коммутаторы 3 уровня (layer 3) . Данные устройства еще называют мультисвичи так как они объединяют в себе возможности коммутаторов работающих на втором уровне и маршрутизаторов работающих с IP пакетами на третьем уровне. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: l 2 tp , pptp, pppoe, vpn и т.д.

Коммутаторы 4 уровня (Layer 4) . Устройства уровня L4 работающие на транспортном уровне модели OSI . Отвечают за обеспечение надежности передачи данных. Эти коммутаторы, могут на основании информации из заголовков пакетов понимать принадлежность трафика разным приложениям и принимать решения о перенаправлении такого трафика на основании этой информации. Название таких устройств не устоялось, иногда их называют интеллектуальными коммутаторами, или коммутаторами L4.

Основные характеристики коммутаторов

Количество портов . В настоящее время существуют коммутаторы с количеством портов от 5 до 48. От этого параметра зависит количество сетевых устройств, которые можно подключить к данному коммутатору.

Например при построении малой локальной сети из 15 компьютеров нам понадобится коммутатор с 16 портами: 15 для подключения конченых устройств и один для установки и подключения маршрутизатора для выхода в интернет.

Скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно скорости указываются следующим образом: 10/100/1000 Мбит/с. Скорость работы порта определяется в процессе авто согласование с конечным устройством. В управляемых коммутаторах данный параметр может настраиваться вручную.

Например : Клиентское устройство ПК с сетевой платой 1 Гбит/с подключено к порту коммутатора со скоростью работы 10/100 Мбит/ c . В результате авто согласования устройства договариваются использовать максимально возможную скорость в 100 Мбит/с.

Авто согласование порта между Full – duplex и half – duplex . Full – duplex: передача данных одновременно осуществляется в двух направления. Half – duplex передача данных осуществляется сначала в одном, потом в другом направлении последовательно.

Внутренняя пропускная способность коммутационной матрицы . Данный параметр показывает с какой общей скоростью коммутатор может обрабатывать данные со всех портов.

Например : в локальной сети есть коммутатор у которого 5 портов работающих на скорости 10/100 Мбит/с. В технических характеристиках параметр коммутационная матрица равен 1 Гбит/ c . Это означает что каждый порт в режиме Full – duplex может работать со скоростью 200 Мбит/ c (100 Мбит/с прием и 100 Мбит/с передача). Допустим параметр данной коммутационной матрицы меньше заданного. Это означает, что в момент пиковых нагрузках, порты не смогут работать с заявленной скоростью в 100 Мбит/с.

Авто согласование типа кабеля MDI / MDI-X . Эта функция позволяет определить по какому из двух способов была обжата витая пара EIA/TIA-568A или EIA/TIA-568B. При монтаже локальных сетей наибольшее распространение получила схема EIA/TIA-568B.


Стекирование – это объединение нескольких коммутаторов в одно единое логическое устройство. Разные производители коммутаторов используют свои технологии стекирования, например c isco использует технологию стекирования Stack Wise с шиной между коммутаторами 32 Гбит/сек и Stack Wise Plus с шиной между коммутаторами 64 Гбит/сек.

К примеру данная технология актуально в крупных локальных сетях, где требуется на базе одного устройства подключить более 48 портов.


Крепеж для 19” стойки . В домашних условиях и малых локальных сетях коммутаторы довольно часто устанавливают на ровные поверхности или крепят на стену, однако наличие так называемых «ушей» необходимо в более крупных локальных сетях где активное оборудование размещается в серверных шкафах.

Размер таблицы MAC адресов . Коммутатор (switch) это устройство работающее на 2 уровне модели OSI . В отличии от хаба, который просто перенаправляет полученный фрейм во все порты кроме порта отправителя, коммутатор обучается: запоминает MAC адрес устройства отправителя, занося его, номер порта и время жизни записи в таблицу. Используя данную таблицу коммутатор перенаправляет фрейм не на все порты, а только на порт получателя. Если в локальной сети количество сетевых устройств значительно и размер таблицы переполнен, коммутатор начинает затирать более старые записи в таблице и записывает новые, что значительно снижает скорость работы коммутатора.

Jumboframe . Эта функции позволяет коммутатору работать с большим размером пакета, чем это определено стандартом Ethernet. После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша нет

Режимы коммутации. Для того, чтобы понять принцип работы режимов коммутации, сначала рассмотрим структуру фрейма передаваемого на канальном уровни между сетевым устройством и коммутатором в локальной сети:


Как видно из рисунка:

  • Сначала идет преамбула сигнализирующая начало передачи фрейма,
  • Затем MAC адрес назначения (DA ) и MAC адрес отправителя (SA )
  • Идентификатор третьего уровня: IPv 4 или IPv 6 используется
  • payload )
  • И в конце контрольная сумма FCS : 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным значением.

Теперь рассмотрим режимы коммутации:

Store - and - forward . Данный режим коммутации сохраняет фрейм в буфер целиком и проверяет поле FCS , которое находится в самом конце фрейма и если контрольная сумма этого поля не совпадает, отбрасывает весь фрейм. В результате снижается вероятность возникновения перегрузок в сети, так как есть возможность отбрасывать фреймы с ошибкой и откладывать время передачи пакета. Данная технология присутствует в более дорогих коммутаторах.

Cut -through . Более простая технология. В данном случае фреймы могут обрабатываться быстрее, так как не сохраняются в буфер полностью. Для анализа в буфер сохраняются данные от начала фрейма до MAC адрес назначения (DA) включительно. Коммутатор вычитывает этот MAC адрес и перенаправляет его адресату. Недостатком данной технологии является то, что коммутатор пересылая в данном случае как карликовые, длиной менее 512 битовых интервала, так и поврежденные пакеты, увеличивая нагрузку на локальную сеть.

Поддержка технологии PoE

Технология pover over ethernet позволяет запитывать сетевое устройство по тому же кабелю. Данное решение позволяет сократить денежные затраты на дополнительный монтаж питающих линий.

Существует следующие стандарты PoE:

PoE 802.3af поддерживает оборудование мощностью до 15,4 Вт

PoE 802.3at поддерживает оборудование мощностью до 30 Вт

Passiv PoE

PoE 802.3 af/at имеют интеллектуальные схемы управления подачи напряжения на устройство: прежде чем подать питание на устройство PoE источник стандарта af/at производит согласование с ним во избежании порчи устройства. Passiv PoE значительно дешевле первых двух стандартов, питание напрямую подается на устройство по свободным парам сетевого кабеля без каких либо согласований.

Характеристики стандартов


Стандарт PoE 802.3af поддерживается большинством недорогих IP видеокамер, IP телефонов и точек доступа.

Стандарт PoE 802.3at присутствует в более дорогих моделях IP камер видеонаблюдения, где не возможно уложиться в 15.4 Вт. В этом случае как IP видеокамера, так и PoE источник (коммутатор) должны поддерживать данный стандарт.

Слоты расширения . Коммутаторы могут иметь дополнительные слоты расширения. Наиболее распространенными являются SFP модули (Small Form-factor Pluggable) . Модульные, компактные приемопередатчики использующиеся для передачи данных в телекоммуникационной среде.


SFP модули вставляются в свободный SFP порт маршрутизатора, коммутатора, мультиплексора или медиа-конвертера. Хотя существуют SFP модули Ethernet, наиболее часто используются оптоволоконные модули для подкючения маигстрального канала при передаче данных на большие расстояния, недосягаемые для стандарта Ethernet. SFP модули подбираются в зависимости от расстояния, скорости передачи данных. Наиболее распространенными являются двухволоконные SFP модули, использующие одно волокно для приема, другое для передачи данных. Однако технология WDM позволяет вести передачу данных на разных длинах волн по одному оптическому кабелю.

SFP модули бывают:

  • SX - 850 нм используется с многомодовым оптическим кабелем на расстоянии до 550м
  • LX - 1310 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
  • BX - 1310/1550 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
  • XD - 1550 нм используется с одномодовый кабель до 40км, ZX до 80км, EZ или EZX до 120 км и DWDM

Сам стандарт SFP предусматривает передачу данных со скоростью 1Гбит/с, либо со скоростью 100 Мбит/с. Для более быстрой передачи данных, были разработаны модули SFP+:

  • SFP+ передача данных со скоростью 10 Гбит/с
  • XFP передача данных со скоростью 10 Гбит/с
  • QSFP+ передача данных со скоростью 40 Гбит/с
  • CFP передача данных со скоростью 100 Гбит/с

Однако при более высоких скоростях производится обработка сигналов на высоких частотах. Это требует большего теплоотвода и, соответственно, больших габаритов. Поэтому, собственно, форм-фактор SFP сохранился еще только в модулях SFP+.

Заключение

Многие читатели наверное сталкивались с неуправляемыми коммутаторами и бюджетными управляемыми коммутаторами второго уровня в малых локальных сетях. Однако выбор коммутаторов для построения более крупных и технически сложных локальных сетей лучше предоставить профессионалам.

Безопасная Кубань при монтаже локальных сетей использует коммутаторы следующих брендов:

Профессиональное решение:

Cisco

Qtech

Бюджетное решение

D-Link

Tp-Link

Tenda

Безопасная Кубань выполняет монтаж, запуск в эксплуатацию и обслуживание локальных сетей по Краснодару и Югу России.