Переключатели на биполярных транзисторах. Электронный выключатель Одна кнопка переключает два положения из транзисторов

При работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание?

На чем делаются транзисторные ключи

Они выполняются с использованием полевых или Первые дополнительно делятся на МДП и ключи, которые имеют управляющий р-n-переход. Среди биполярных различают не/насыщенные. Транзисторный ключ 12 Вольт сможет удовлетворить основные запросы со стороны радиолюбителя.

Статический режим работы

В нём проводится анализ закрытого и открытого состояния ключа. В первом на входе находится низкий уровень напряжения, который обозначает сигнал логического нуля. При таком режиме оба перехода находятся в обратном направлении (получается отсечка). А на коллекторный ток может повлиять только тепловой. В открытом состоянии на входе ключа находится высокий уровень напряжения, соответствующий сигналу логической единицы. Возможной является работа в двух режимах одновременно. Такое функционирование может быть в области насыщения или линейной области выходной характеристики. На них мы остановимся детальнее.

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

А что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Быстродействие

Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.

Что выбрать

С чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах Поэтому в них применяются специальные где есть управляющий р-n-переход. Их преимущества над биполярными собратьями такие:

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат - малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле - вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки - и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое - превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Расчет транзисторного ключа

Для понимания привожу пример расчета, можете подставить свои данные:

1) Коллектор-эмиттер - 45 В. Общая рассеиваемая мощность - 500 mw. Коллектор-эмиттер - 0,2 В. Граничная частота работы - 100 мГц. База-эмиттер - 0,9 В. Коллекторный ток - 100 мА. Статистический коэффициент передачи тока - 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.

5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 - 0,9 = 4,1В.

7) Определяем базы: 4,1\0,00028 = 14,642,9 Ом.

Заключение

И напоследок про название "электронные ключи". Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом - дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.

» в мир современной электроники… Перед вами последняя часть данного курса.

Шаг 10: Светодиоды

Индикаторами, обычно называют светодиоды, которые являются настоящими незамеченными героями в мире электроники. Они формируют числа на электронных часах, передают информацию от дистанционных устройств, освещают приборные панели и оповещают пользователей о том, что используемые ими приборы включены. Если их собрать вместе, они смогут сформировать изображения на гигантском телевизионном экране или осветить светофор.

В основном светодиоды — простые крошечные лампочки, которые легко «монтируются» в электрическую схему. Но в отличие от обычных ламп накаливания, у них нет нити, которая может перегореть, а так же они не так греются, как лампы. Они излучают свет исключительно за счёт движения электронов в полупроводнике. Продолжительность жизни светодиода превосходит жизнь ламп накаливания на тысячи часов.

Светодиоды используются для освещения или для индикации.

Обычные светодиоды хороши в качестве индикаторов, поскольку они светят мягким и однородным светом, который хорошо видно под любым углом. У ярких светодиодов свет прямой и мощный, но вы не сможете увидеть их свечение под углом, потому что свет направлен только вперёд.

Светодиод — диод, на который оказывает влияние ток, а не напряжение. Он «питается» током в прямом направлении (плюс к минус, или анод к катоду) и начинает излучать свет при минимальном токе. Типичный красный светодиод потребляет от 10mA до 20mA. Если подать значение больше допустимого, светодиод просто сгорит.

Так как работа светодиода зависит от тока, и не зависит от напряжения, он не может быть подключён непосредственно к аккумулятору или источнику питания. Самый простой способ защитить светодиод от «убийственного» значения тока – это подключить его через резистор. Резистор снизит ток и приведёт его значение до приемлемого уровня.

Рассчитаем значение LED резистора по следующей формуле:

Значение Резистора LED, R = (напряжение питания — напряжение LED) / ток LED.

В нашем примере:

Возьмём, 9-вольтовую батарею (напряжение питания = 9 В). Напряжение для красного светодиода 2 В, ток – 20 мА.

Если у вас нет резистора с определенным значением, то выберите самое близкое стандартное сопротивление, которое немного больше рассчитанного. Если хотите увеличить время свечения, то можете выбрать более высокое значение резистора, чтобы уменьшить ток. Для 15mA , R = (9 — 2.0) / 15 мА = 466 Ом (используем более высокое стандартное значение = 470 Ом).

Шаг 11: Транзистор

Транзисторы можно рассматривать, как один из видов электронного переключателя.

(Для справки: транзисторный переключатель гораздо быстрее, чем механический)

Есть два основных типа транзисторов: биполярный и МОП-транзистор (металл-оксид-полупроводник). Биполярные транзисторы в свою очередь делиться на: N-P-N и P-N-P структуры. Большинство схем использует N-P-N структуру. Транзисторы изготавливаются в различных формах, но все они имеют три вывода. База — является ведущей и отвечает за активацию транзистора. Коллектор – положительный вывод. Эмиттер – отрицательный вывод. (У каждого элемента выводы располагаются в определенном порядке).

Транзистор — миниатюрный электронный компонент, который может выполнять две функции. Он может быть усилителем или переключателем.

Когда он работает усилителем, то берёт небольшой ток (входной ток) и увеличивает его значение (выходной ток). Другими словами, это — токоусилитель (используется в слуховых аппаратах).

Кроме того, транзисторы могут выполнять роль переключателей. Небольшой электрический ток, протекающий через одну часть транзистора, может активировать другую его сторону. Так работают все микросхемы. Например, микросхема памяти содержит сотни миллионов или даже миллиардов транзисторов, каждый из которых может быть включен или выключен индивидуально. Так как каждый транзистор может быть в двух отличных режимах, то он может сохранить два различных числа, ноль и один. С миллиардами транзисторов чип может сохранить миллиарды нолей, и почти столько же обычных знаков.

Режимы функционирования

В отличие от резисторов работа которых основывается на линейном соотношении между напряжением и током, транзисторы — нелинейные устройства. У них есть четыре отличающихся режима работы.

(Когда говорят об электрическом токе, что идёт через транзистор), мы, обычно, имеем в виду ток, протекающий из коллектора к эмиттеру, транзистора с N-P-N структурой.

Насыщенность – транзистор действует, как перемычка. Ток свободно протекает от коллектора к эмиттеру.

Отсечение – транзистор действует, как прерыватель цепи. Токи от коллектора к эмиттеру не идут.

Активный – ток от коллектора к эмиттеру пропорционален току, протекающему к базе.

Обратно-активный – как и в активном, ток пропорционален току базы, но протекает в обратном направлении.

Введя транзистор в режим отсечки или насыщения, можно создать двойной эффект включения — выключения. Транзисторы-переключатели используются, чтобы включают микроконтроллеры, микропроцессоры и другие интегральные схемы.

Транзисторный выключатель (ТВ)

Давайте рассмотрим фундаментальную схему «ТВ» N-P-N структуры. Воспользуемся им, чтобы управлять мощным светодиодом.

В то время как обычный переключатель «врезался бы в линию», ТВ управляется напряжением, которое поступает на базу. Контакт ввода-вывода микроконтроллера, может быть запрограммирован, так чтобы пропускать высокий или низкий ток, тем самым включать или выключать цепь.

Когда напряжение базы больше, чем 0.6 В, транзистор начинает насыщаться, что похоже на короткое замыкание между коллектором и эмиттером. Когда напряжение меньше чем 0.6 В, транзистор находится в режиме отсечки – ток не проходит, это похоже на разомкнутую цепь между коллектором и эмиттером.

Такую схему подключения называют переключателем «низкой стороны». В качестве альтернативы, можем использовать транзистор PNP структуры для создания переключателя «высокой стороны».

Базовые резисторы

Вы заметили, что каждая из описанных схем использует последовательный резистор между вводом управления и базой транзистора. Не забывайте добавлять этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Вспомните, что, в некотором смысле, транзистор — просто пара соединенных диодов. Некоторые транзисторы могут быть рассчитаны только на максимум 10-100mA, что проходит через них. Если вы пропустите ток превышающий максимально допустимый, транзистор может взорваться.

Имя тип Vce Ic Вт ft
2N2222 NPN 40V 800mA 625mW 300MHz
BC548 NPN 30V 100mA 500mW 300MHz
2N3904 NPN 40V 200mA 625mW 270MHz
2N3906 PNP -40V -200mA 625mW 250MHz
BC557 PNP -45V -100mA 500mW 150MHz
TIP120 (power) NPN 60V 5A 65W

МОП — транзистор

МОП является другим типом транзистора, используемого для усиления или переключения электронных сигналов.

Основное преимущество МОП перед обычными транзисторами заключается в том, что он требует, малый ток для включения (меньше, чем 1mA) при выходе более высокого тока нагрузки (10 — 50А и больше).

У МОП чрезвычайно высокое входное сопротивление затвора с током, протекающим через канал между истоком и стоком под контролем напряжения на затворе. Из-за этого высокого входного сопротивления, МОП могут быть легко повреждены статическим электричеством.

МОП-ТРАНЗИСТОР идеален для использования в качестве электронных переключателей или в качестве усилителей с общим истоком, поскольку их потребляемая мощность очень небольшая.

Шаг 12: Стабилизаторы напряжения

Стабилизатор напряжения генерирует фиксированное выходное напряжение предварительно установленной величины, которое остаётся постоянным независимо от изменений величин входного напряжения и нагрузки. Есть два типа стабилизаторов напряжения:

  • Линейный;
  • Переменного напряжения.

Рассеиваемая мощность линейного регулятора прямо пропорциональна выходному току для напряжения ввода и вывода, таким образом, типичный КПД составляет 50% или ещё ниже. Используя оптимальные компоненты, стабилизатор переменного напряжения может достигнуть КПД 90%. Однако мощность помех на выходе от линейного регулятора намного ниже, чем у переменного с теми же выходными напряжениями и аналогичными характеристиками. Как правило, переменный может управлять более высокими текущими нагрузками, чем линейный стабилизатор.

Линейный стабилизатор есть не что иное, как делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

Существует два типа линейного стабилизатора:

Фиксированные

«Фиксированные» линейные стабилизаторы с тремя терминалами стабилизируют постоянные напряжения 3 В, 5 В, 6 В, 9 В, 12 В или 15 В, когда нагрузка составляет меньше чем 1.5 А. Ряд «78xx» (7805, 7812, и т.д.) регулирует положительные напряжения, в то время как «79xx» (7905, 7912, и т.д.) регулируют отрицательные напряжения. Часто, последние две цифры — выходное напряжение (например, 7805 — +5вольтовый стабилизатор, в то время как 7915 — −15 В стабилизатор).

Переменные

Такой тип генерирует фиксированное низкое номинальное напряжение между выходом и корректировочным терминалом (эквивалентный клемме заземления в фиксированном). Семейство устройств включает такие как LM723 (низкой мощности) и LM317 и L200 (средней мощности). Некоторые переменные доступны в сборках больше чем с тремя контактами, включая корпуса с двухрядным расположением выводов. Они предоставляют возможность скорректировать выходное напряжение при помощи внешних резисторов с известными значениями.

Серия (+1.25V) LM317 регулирует положительные напряжения, в то время как серия LM337 (−1.25V) регулирует отрицательные напряжения.

Применение линейных стабилизаторов

L7805 (Стабилизатор напряжения — 5 В): Это — основной стабилизатор напряжения, положительный регулятор с тремя терминалами с 5 В фиксированным выходным напряжением. Максимальный выходной ток до 1.5 А.

L7812 (Стабилизатор напряжения — 12 В): Это — основной стабилизатор напряжения, положительный регулятор с тремя терминалами с 12 В фиксированным выходным напряжением. Максимальный выходной ток до 1.5 А.

LM317 («Подстроечный»1.25 В к 37 В): — регулятор положительного напряжения с тремя терминалами, способный выдавать больше чем 1.5А, по диапазону выходного напряжения 1.25 В к 37 В. Он требует, наличия двух внешних резисторов, установленных на выходном напряжении.

Стабилизаторы переменного напряжения это устройства, предназначенные для поддержания постоянного значения напряжения, независимо от его колебания во входной цепи.

Повышающий стабилизатор

Это преобразователь постоянного тока с выходным напряжением, больше, чем его входное напряжение.

Типичный пример преобразователя повышения LM27313. Эта микросхема разработана для использования в системах низкой мощности, таких как камеры, мобильные телефоны и устройства GPS. Другой общий корректируемый преобразователь — LM2577.

Шаг 13: Интегральные схемы

Интегральная схема (ИC) (иногда называется микросхемой или микрочипом) – является полупроводниковой пластиной, на которой выполнены тысячи или миллионы крошечных резисторов, конденсаторов и транзисторов. ИC может функционировать как усилитель, осциллятор, таймер, счетчик, память компьютера или микропроцессор.

У линейных ИС есть вывод с плавной регулировкой (теоретически способный достичь бесконечного числа состояний), который зависит от уровня входного сигнала. Линейные ИС используются в качестве усилителей звуковой частоты (AF) и радиочастоты (RF). Операционный усилитель (операционный усилитель) является общим устройством в этих приложениях.

Цифровые ИС работают только на нескольких определённых уровнях или состояниях, а не по непрерывному диапазону амплитуд сигнала. Эти устройства используются в компьютерах, компьютерных сетях, модемах и частотомерах. Фундаментальные стандартные блоки цифровых ИС — логические элементы, которые работают с двоичными данными, т.е. сигналы, у которых есть только два различных состояния низкое (логика 0) и высокое (логика 1).

В зависимости от способа производства, интегральные схемы могут быть разделены на две группы: гибрид и монолитный.

Нумерация контактов (цоколёвка)

Каждая «ножка» микросхемы имеет свой определенный номер и ряд функций, которые она выполняет. На рисунке показана метка, благодаря которой можно определить первый контакт чипа.

Одна из основных характеристик корпуса — способ, которым он монтируются на печатную плату. Либо это выводные контакты либо поверхностный монтаж.

Спасибо за внимание!

Пожалуй, даже далёкий от электроники человек слышал, что существует такой элемент, как реле. Простейшее электромагнитное реле содержит в себе электромагнит, при подаче на который напряжения происходит замыкание двух других контактов. С помощью реле мы может коммутировать довольно мощную нагрузку, подавая или наоборот, снимая напряжение с управляющих контактов. Наибольшее распространение получили реле, управляющиеся от 12-ти вольт. Также встречаются реле на напряжение 3, 5, 24 вольта.

Однако коммутировать мощную нагрузку можно не только с помощью реле. В последнее время широкое распространение получили мощные полевые транзисторы. Одно из их главных предназначений – работа в ключевом режиме, т.е. транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток – Исток практически равно нулю. Открыть полевой транзистор можно подав напряжение на затвор относительно его истока. Сравнить работу ключа на полевом транзисторе можно с работой реле – подали напряжение на затвор, транзистор открылся, цепь замкнулась. Сняли напряжение с затвора – цепь разомкнулась, нагрузка обесточена.
При этом ключ на полевом транзисторе имеет перед реле некоторые преимущества, такие, как:

  • Большая долговечность. Довольно часто реле выходят из строя из-за наличия механически подвижных частей, транзистор же при правильных условиях эксплуатации имеет гораздо больший срок службы.
  • Экономичность. Обмотка реле потребляет ток, причём иногда весьма значительный. Затвор транзистора же потребляет ток только в момент подачи на него напряжения, затем он практически не потребляет тока.
  • Отсутствие щелчков при переключении.

Схема

Схема ключа на полевого транзистора представлена ниже:


Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.
Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм.
Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные. При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю. Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала.
«N» на схеме – какая-либо нагрузка.
Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.

Изготовление ключа на полевом транзисторе

Собрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:
1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.


2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.


3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд.


4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.


5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.


После травления плата приобретает такой вид:


6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.


7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:



Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор.


На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так:

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

ПЕРЕКЛЮЧАТЕЛИ НА МИКРОСХЕМАХ

Микросхема К162КТ1. Микросхема (рис. 6.1) содержит два транзистора типа р-n-р с общим выводом коллектора и приме­няется в прерывателях с автономным управляющим источником. Огтаточное напряжение между контактами 1 и 7 при базовом токе 2 мА составляет: К162КТ1А - 100 мкВ, К162К.Т1Б - 200 мкВ, К162КТ1 - 300 мкВ. Сопротивление между эмиттерами равно 100 Ом. Обратное напряжение база - эмиттер - 30 В а коллек­тор - база - 20 В.

Рис. 6.1 Рис. 6.2

Микросхема К101КТ1. В микросхеме применены транзисторы с проводимостью типа n-р-n (рис. 6.2). Для управления микросхемой необходимо иметь управляющий сигнал, не связанный с общей ши­ной. Остаточное напряжение между контактами 3 и 7 для групп А, В составляет менее 50 мкВ, а для групп Б, Г - менее 150 мкВ. Напряжение между эмиттерами для групп А, Б составляет 6,3 b] а для групп В, Г - 3 В. Ток через транзисторы не более 10 мА! Сопротивление между эмиттерами менее 100 Ом. Ток утечки между эмиттерами менее 10~ 8 А.

Рис. 6.3

Микросхемы К168КТ1 и К168КТ2. Эти микросхемы (рис. 6.3) применяют в качестве коммутаторов аналогового сигнала. Управ­ляемый и входной сигналы имеют общую шину. Остаточное напря­жение сток - исток менее 10 мкВ. Сопротивление открытого тран­зистора менее 100 Ом. Ток утечки сток - истбк для групп А, Б, В - менее ШиА. Ток утечки детвора не превышает 10нА. Время включения равно 0,3 мкс, а время выключения - 0,7 мкс. Допусти­мые напряжения между затвором и подложкой 30 В, а между истоком и стоком - подложкой для группы А - 10 В, для группы Б - 15 В, для группы В - 25 В.

Модулятор последовательно-параллельного типа. Работа модулятора (рис. 6.4) основана на поочередном открывании и за­крывании транзисторов. Когда импульс положительной полярности приходит на базу VT1, то транзистор открывается и через него протекает ток, значение которого определяется сопротивлением ре­зистора RL Входной сигнал проходит на выход. В следующий полупериод управляющего сигнала положительный импульс откры­вает транзистор VT2, транзистор VT1 закрывается. Выход подклю­чается к нулевой шине. Важным фактором в работе схемы являет­ся равенство остаточных напряжений. Для выравнивания этих на­пряжений служит резистор R1.

Дистанционный выключатель. В схеме выключателя (рис. 6.5, а) для открывания транзисторного ключа используется выпрямленное с помощью диода VD1 и конденсатора С1 управляющее напряже­ние. В схеме отсутствуют импульсные помехи, связанные с пере­ключением транзисторов. Управление осуществляется гармонически­ми сигналами с амплитудой 2 - 3 В. Протекающий через транзисто­ры ток создает падение напряжения. Зависимость падения напря­жения на ключе от протекающего тока показана на рис. 6,5, б.



Однополупериодный модулятор. Модулятор (рис. 6.6, а) по­строен на микросхеме К101КТ1В. Управляющий сигнал прямоуголь­ной формы с амплитудой 2 В одновременно открывает оба транзи­стора. Входной сигнал поступает на первичную обмотку выходного трансформатора. Учитывая характеристику зависимости остаточного напряжения от управляющего тока, входной сигнал должен йревы-шать значение 20 - 30 мкВ.

Остаточное напряжение можно уменьшить, подбирая управля­ющий ток, протекающий через один из резисторов. В некоторых случаях регулировкой сопротивления резистора R1 можно добиться полной компенсации остаточного напряжения. На рис. 6.6, б пред­ставлена зависимость U 0 ст от I уир для наиболее типичного случая.

Двухполупериодный модулятор. Модулятор (рис. 6.7) работает на частоте 20 кГц. Амплитуда управляющих импульсов прямоуголь­ной формы равна 4 В. В результате поочередного открывания тран­зисторов VT1 и VT2 входной сигнал попадает на разные выводы первичной обмотки Тр2. На вторичной обмотке появится сигнал прямоугольной формы с амплитудой входного сигнала.

Для уменьшения влияния остаточного напряжения на транзи­сторах в схему введены резисторы R1 и R4. С помощью резистора R1 выравниваются управляющие базовые токи, в результате чего остаточное напряжение составляет около 4 мВ. Резистор R4 ком­пенсирует это напряжение и тем самым позволяет создать модуля­тор с чувствительностью около 10 мкВ.

Компенсационный модулятор. Для уменьшения начального уров­ня в модуляторе (рис. 6.8) применяется сложная схема подачи управляющнх сигналов. Поскольку начальный уровень модуляторов определяется импульсными сигналами, которые проходят через ем­кости база - коллектор, то подстройка сводится к изменению переднего и заднего фронтов управляющих сигналов. Управляющий сигнал с амплитудой 15 В подается на первичную обмотку транс­форматора. С помощью резисторов R3 и R4 и диодов VD3 и VD4 фронты управляющих импульсов заваливаются настолько, что поз­воляют скомпенсировать помеху до уровня менее 30 мкВ.

Рис. 6.4

Рис. 6.5

Рис. 6.6

Рис. 6.7 Рис. 6.8