Определитель матрицы и его свойства. Определитель (детерминант) матрицы

Можно поставить в соответствие некоторое число , вычисляемое по определенному правилу и называемое определителем .

Необходимость введения понятия определителя - числа , характеризующего квадратную матрицу порядка n , тесно связано с решением систем линейных алгебраических уравнений .

Определитель матрицы А будем обозначать: |А | или D.

Определителем матрицы первого порядка А = (а 11) называется элемент а 11 . Например, для А = (-4) имеем |А | = -4.

Определителем матрицы второго порядка называется число , определяемое по формуле

|А | = .

Например, |А | = .

Словами это правило можно записать так: со своим знаком надо взять произведение элементов, соединенных главной диагональю , и произведения элементов, соединенных вершинами треугольников, у которых основание параллельно главной диагонали . С обратным знаком берутся аналогичные произведения, только относительно побочной диагонали.

Например,

Определение определителя матрицы n -го порядка давать не будем, а лишь покажем метод его нахождения.

В дальнейшем, вместо слов определитель матрицы n -го порядка будем говорить просто определитель n -го порядка . Введем новые понятия.

Пусть дана квадратная матрица n -го порядка.

Минором М ij элемента а ij матрицы А называется определитель (n -1)-го порядка, полученный из матрицы А вычеркиванием i -ой строки и j -го столбца.

Алгебраическим дополнением А ij элемента а ij матрицы А называется его минор, взятый со знаком (-1) i+j:

А ij = (-1) i + j М ij ,

т.е. алгебраическое дополнение либо совпадает со своим минором, когда сумма номеров строки и столбца - четное число, либо отличается от него знаком, когда сумма номеров строки и столбца - нечетное число.

Например, для элементов а 11 и а 12 матрицы А = миноры

М 11 = А 11 = ,

М 12 = ,

а А 12 = (-1) 1+2 М 12 = -8.

Теорема (о разложении определителя) . Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения, т.е.

|А | = а i1 A i1 + а i2 A i2 + … + а in A in ,
для любого i = 1, 2, …, n

|А | = а 1j A 1j + а 2j A 2j + … + а nj A nj ,

для любого j = 1, 2, …, n


Первая формула называется i -ой строки, а вторая - разложением определителя по элементам j -го столбца.

Нетрудно понять, что с помощью этих формул любой определитель n -го порядка можно свести к сумме определителей, порядок которых будет на 1 меньше и т.д. пока не дойдем до определителей 3-го или 2-го порядков, вычисление которых уже не представляет трудности.

Для нахождения определителя могут быть применены следующие основные свойства:

1. Если какая-нибудь строка (или столбец) определителя состоит из нулей, то и сам определитель равен нулю.

2. При перестановке любых двух строк (или двух столбцов) определитель умножается на -1.

3. Определитель с двумя одинаковыми или пропорциональными строками (или столбцами) равен нулю.

4. Общий множитель элементов любой строки (или столбца) можно вынести за знак определителя.

5. Величина определителя не изменится, если все строки и столбцы поменять местами.

6. Величина определителя не изменится, если к одной из строк (или к одному из столбцов) прибавить другую строку (столбец), умноженную на любое число.

7. Сумма произведений элементов какой-нибудь строки (или столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна нулю.

8. Определитель произведения двух квадратных матриц равен произведению их определителей.

Введение понятия определителя матрицы позволяет определить еще одно действие с матрицами - нахождение обратной матрицы.

Для каждого ненулевого числа существует обратное число, такое, что произведение этих чисел дает единицу. Для квадратных матриц тоже существует такое понятие.

Матрица А -1 называется обратной по отношению к квадратной матрице А , если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица , т.е.

А ×А -1 = А -1 × А = Е.

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица будет квадратной того же порядка. Однако не каждая квадратная матрица имеет свою обратную.

Равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е. , где i 0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i 0 .

Назначение сервиса . Данный сервис предназначен для нахождения определителя матрицы в онлайн режиме с оформлением всего хода решения в формате Word . Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите размерность матрицы, нажмите Далее. Вычислить определитель можно будет двумя способами: по определению и разложением по строке или столбцу . Если требуется найти определитель созданием нулей в одной из строк или столбцов, то можно использовать этот калькулятор .

Алгоритм нахождения определителя

  1. Для матриц порядка n=2 определитель вычисляется по формуле: Δ=a 11 *a 22 -a 12 *a 21
  2. Для матриц порядка n=3 определитель вычисляется через алгебраические дополнения или методом Саррюса .
  3. Матрица, имеющая размерность больше трех, раскладывается на алгебраические дополнения, для которых вычисляются свои определители (миноры). Например, определитель матрицы 4 порядка находится через разложение по строкам или столбцам (см. пример).
Для вычисления определителя, содержащего в матрице функции, применяются стандартные методы. Например, вычислить определитель матрицы 3 порядка:

Используем прием разложения по первой строке.
Δ = sin(x)× + 1× = 2sin(x)cos(x)-2cos(x) = sin(2x)-2cos(x)

Методы вычислений определителей

Нахождение определителя через алгебраические дополнения является распространенным методом. Его упрощенным вариантом является вычисление определителя правилом Саррюса . Однако при большой размерности матрицы, используют следующие методы:
  1. вычисление определителя методом понижения порядка
  2. вычисление определителя методом Гаусса (через приведение матрицы к треугольному виду).
В Excel для расчета определителя используется функция =МОПРЕД(диапазон ячеек) .

Прикладное использование определителей

Вычисляют определители, как правило, для конкретной системы, заданной в виде квадратной матрицы. Рассмотрим некоторые виды задач на нахождение определителя матрицы . Иногда требуется найти неизвестный параметр a , при котором определитель равнялся бы нулю. Для этого необходимо составить уравнение определителя (например, по правилу треугольников ) и, приравняв его к 0 , вычислить параметр a .
разложение по столбцам (по первому столбцу):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.
Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 .

Определим минор для (2,1): для этого вычеркиваем из матрицы вторую строку и первый столбец.

Найдем определитель для этого минора. ∆ 2,1 = (0 (-2)-2 (-2)) = 4 . Минор для (3,1): Вычеркиваем из матрицы 3-ю строку и 1-й столбец.
Найдем определитель для этого минора. ∆ 3,1 = (0 1-2 (-2)) = 4
Главный определитель равен: ∆ = (1 (-6)-3 4+1 4) = -14

Найдем определитель, использовав разложение по строкам (по первой строке):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.


Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 . Минор для (1,2): Вычеркиваем из матрицы 1-ю строку и 2-й столбец. Вычислим определитель для этого минора. ∆ 1,2 = (3 (-2)-1 1) = -7 . И чтобы найти минор для (1,3) вычеркиваем из матрицы первую строку и третий столбец. Найдем определитель для этого минора. ∆ 1,3 = (3 2-1 2) = 4
Находим главный определитель: ∆ = (1 (-6)-0 (-7)+(-2 4)) = -14

Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).

Часто в ВУЗе попадаются задачи по высшей математики, в которых необходимо вычислить определитель матрицы . К слову, определитель может быть только в квадратных матрицах. Ниже рассмотрим основные определения, какими свойствами обладает определитель и как его правильно вычислить.. Также на примерах покажем подробное решение.

Что такое определитель матрицы: вычисление определителя при помощи определения

Определитель матрицы

Второго порядка – это число .

Определитель матрицы обозначается – (сокращенно от латинского названия детерминант), или .

Если:, тогда получается

Напомним ещё несколько вспомогательных определений:

Определение

Упорядоченный набор чисел, который состоит из элементов называется перестановкой порядка .

Для множества, которое содержит элементов есть факториал (n), который всегда обозначается восклицательным знаком: . Перестановки отличаются друг от друга всего лишь порядком следования. Чтобы вам было понятнее, приведём пример:

Рассмотрим множество из трёх элементов {3, 6, 7}. Всего перестановок 6, так как .:

Определение

Инверсия в перестановке порядка – это упорядоченный набор чисел (его ещё называют биекцией), где из них два числа образуют некий беспорядок. Это когда большее из чисел в данной перестановке расположено левее меньшего числа.

Выше мы рассматривали пример с инверсией перестановки, где были числа . Так вот, возьмём вторую строку, где судя по данным числам получается, что , а , так как второй элемент больше третьего элемента . Возьмём для сравнения шестую строку, где расположены числа: . Здесь есть три пары: , а , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: 0px;">; , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: 0px;">; , – title="Rendered by QuickLaTeX.com" height="12" width="43" style="vertical-align: 0px;">.

Саму инверсию мы изучать не будем, а вот перестановки нам очень пригодятся в дальнейшем рассмотрении темы.

Определение

Определитель матрицы x – число:

– перестановка чисел от 1 до бесконечного числа , а – число инверсий в перестановке. Таким образом, в определитель входит слагаемых, которые называются “членами определителя”.

Можно вычислять определитель матрицы второго порядка, третьего и даже четвёртого. Также стоит упомянуть:

Определение

определитель матрицы – это число, которое равняется

Чтобы понять данную формулу, опишем её более подробно. Определитель квадратной матрицы x – это сумма, которая содержит слагаемых, а каждое слагаемое является собой произведением определённого количества элементов матрицы. При этом, в каждом произведении есть элемент из каждой строки и каждого столбца матрицы.

Перед определённым слагаемым может появится в том случае, если элементы матрицы в произведении идут по порядку (по номеру строку), а количество инверсий в перестановке множество номеров столбцов нечётно.

Выше упоминалось о том, что определитель матрицы обозначается или , то есть, определитель часто называют детерминантом.

Итак, вернёмся к формуле:

Из формулы видно, что определитель матрицы первого порядка – это элемент этой же матрицы .

Вычисление определителя матрицы второго порядка

Чаще всего на практике определитель матрицы решается методами второго, третьего и реже, четвёртого порядка. Рассмотрим, как вычисляется определитель матрицы второго порядка:

В матрице второго порядка , отсюда следует, что факториал . Прежде чем применить формулу

Необходимо определить, какие данные у нас получаются:

2. перестановки множеств: и ;

3. количество инверсий в перестановке : и , так как title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: -1px;">;

4. соответствующие произведения : и .

Получается:

Исходя из вышесказанного мы получаем формулу для вычисления определителя квадратной матрицы второго порядка, то есть x :

Рассмотрим на конкретном примере, как вычислять определитель квадратной матрицы второго порядка:

Пример

Задача

Вычислить определитель матрицы x :

Решение

Итак, у нас получается , , , .

Для решения необходимо воспользоваться ранее рассмотренной формулой:

Подставляем числа с примера и находим:

Ответ

Определитель матрицы второго порядка = .

Вычисление определителя матрицы третьего порядка: пример и решение по формуле

Определение

Определитель матрицы третьего порядка – это число, полученное из девяти заданных чисел, расположенных в виде квадратной таблицы,

Определитель третьего порядка находится почти так же, как и определитель второго порядка. Разница лишь в формуле. Поэтому, если хорошо ориентироваться в формуле, тогда и проблем с решением не будет.

Рассмотрим квадратную матрицу третьего порядка * :

Исходя из данной матрицы, понимаем, что , соответственно, факториал = , а это значит, что всего перестановок получается

Чтобы применить правильно формулу , необходимо найти данные:

Итак, всего перестановок множества :

Количество инверсий в перестановке , а соответствующие произведения = ;

Количество инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="65" style="vertical-align: -4px;">, соответствующие произведения = ;

Инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="65" style="vertical-align: -4px;"> ;

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="118" style="vertical-align: -4px;">, соответствующие произведение =

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="118" style="vertical-align: -4px;">, соответствующие произведение =

. ; инверсий в перестановке title="Rendered by QuickLaTeX.com" height="18" width="171" style="vertical-align: -4px;">, соответствующие произведение = .

Теперь у нас получается:

Таким образом у нас получена формула для вычисления определителя матрицы порядка x :

Нахождение матрицы третьего порядка по правилу треугольника (правило Саррюса)

Как говорилось выше, элементы определителя 3-го порядка расположены в трёх строках и трёх столбцах. Если ввести обозначение общего элемента , тогда первый элемент обозначает номер строки, а второй элемент из индексов – номер столбца. Есть главная (элементы ) и побочная (элементы ) диагонали определителя. Слагаемые в правой части называются членами определителя).

Видно, что каждый член определителя находится в схеме только по одному элементу в каждой строке и каждого столбца.

Вычислять определитель можно при помощи правила прямоугольника, который изображён в виде схемы. Красным цветом выделены члены определителя из элементов главной диагонали, а также члены из элементов, которые находятся в вершине треугольников, что имеют по одной стороне, параллельны главной диагонали (лева схема), беруться со знаком .

Члены с синими стрелками из элементов побочной диагонали, а также из элементов, которые находятся в вершинах треугольников, что имеют стороны, параллельные побочной диагонали (правая схема) берутся со знаком .

На следующем примере научимся, как вычислять определитель квадратной матрицы третьего порядка.

Пример

Задача

Вычислить определитель матрицы третьего порядка:

Решение

В этом примере:

Вычисляем определитель, применяя формулу или схему, которые рассматривались выше:

Ответ

Определитель матрицы третьего порядка =

Основные свойства определителей матрицы третьего порядка

На основании предыдущих определений и формул рассмотрим основные свойства определителя матрицы .

1. Размер определителя не изменится при замене соответствующих строк, столбцов (такая замена называется транспонированием).

На примере убедимся, что определитель матрицы равен определителю транспонированной матрицы:

Вспомним формулу для вычисления определителя:

Транспонируем матрицу:

Вычисляем определитель транспонированной матрицы:

Мы убедились, что определитель транспортированной матрицы равен исходной матрице, что говорит о правильном решении.

2. Знак определителя изменится на противоположный, если в нём поменять местами любые два его столбца или две строки.

Рассмотрим на примере:

Даны две матрицы третьего порядка ( x ):

Нужно показать, что определители данных матриц противоположные.

Решение

В матрице и в матрице поменялись строки (третья с первой, и с первой на третью). Согласно второму свойству определители двух матриц должны отличаться знаком. То есть, одна матрица с положительным знаком, а вторая – с отрицательным. давайте проверим данное свойство, применив формулу для вычисления определителя.

Свойство верно, так как .

3. Определитель равняется нулю, если в нём есть одинаковые соответствующие элементы в двух строках (столбцах). Пусть у определителя одинаковые элементы первого и второго столбцов:

Поменяв местами одинаковые столбцы, мы, согласно свойству 2 получим новый определитель: = . С другой стороны, новый определитель совпадает с изначальным, поскольку одинаковые ответы элементы, то есть = . Из этих равенств у нас получается: = .

4. Определитель равняется нулю, если все элементы одной строки (столбца) нули. Это утверждение выплывает из того, что у каждого члена определителя по формуле (1) есть по одному, и только по одному элементу с каждой строки (столбца), у которого одни нули.

Рассмотрим на примере:

Покажем, что определитель матрицы равен нулю:

В нашей матрицы есть два одинаковых столбца (второй и третий), поэтому, исходя из данного свойства, определитель должен равняться нулю. Проверим:

И действительно, определитель матрицы с двумя одинаковыми столбцами равняется нулю.

5. Общий множитель элементов первой строки (столбца) можно вынести за знак определителя:

6. Если элементы одной строки или одного столбца определителя пропорциональны соответствующим элементам второй строки (столбца), тогда такой определитель равняется нулю.

Действительно, за свойством 5 коэффициент пропорциональности можно вынести за знак определителя, и тогда воспользоваться свойством 3.

7. Если каждый из элементов строк (столбцов) определителя является суммой двух слагаемых, то этот определитель можно подать в виде суммы соответствующих определителей:

Для проверки достаточно записать в развёрнутом виде по (1) определитель, что в левой части равенства, тогда отдельно сгруппировать члены, в которых содержатся элементы и .Каждая из полученных групп слагаемых будет соответственно первым и вторым определителем с правой части равенства.

8. Значения определения не изменятся, если к элементу одной строки или одного столбца прибавить соответствующие элементы второй строки (столбца), умноженные на одно и то же число:

Это равенство получается исходя из свойств 6 и 7.

9. Определитель матрицы , , равняется сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.

Здесь по подразумевается алгебраическое дополнение элемента матрицы . При помощи данного свойства можно вычислять не только матрицы третьего порядка, но и матрицы более высших порядков ( x или x ).Другими словами – это рекуррентная формула, которая нужна для того, чтобы вычислить определитель матрицы любого порядка. Запомните её, так как она часто применяется на практике.

Стоит сказать, что при помощи девятого свойства можно вычислять определители матриц не только четвёртого порядка, но и более высших порядков. Однако, при этом нужно совершать очень много вычислительных операций и быть внимательным, так как малейшая ошибка в знаках приведёт к неверному решению. Матрицы высших порядков удобнее всего решать методом Гаусса, и об этом поговорим позже.

10. Определитель произведения матриц одного порядка равен произведению их определителей.

Рассмотрим на примере:

Пример

Задача

Убедитесь, что определитель двух матриц и равен произведению их определителей. Даны две матрицы:

Решение

Сначала находим произведение определителей двух матриц и .

Теперь выполним умножение обеих матриц и таким образом, вычислим определитель:

Ответ

Мы убедились, что

Вычисление определителя матрицы при помощи метода Гаусса

Определитель матрицы обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Определитель: det, ||, детерминант.

Определитель - это не матрица, а число.

Как найти определитель матрицы?

Чтобы найти определитель матрицы вводят понятие "минор" . Обозначение: M ij - минор, M ij 2 - минор второго порядка (определитель матрицы 2*2) и т.д.

Чтобы найти минор для элемента a ij , вычеркиваем из матрицы A i-ю строку и j-й столбец. Получаем матрицу размерностью n-1*m-1, находим определитель этой матрицы .

Пример: найти минор второго порядка для элемента a 12 матрицы A:

Вычеркиваем из матрицы A 1-ю строку и 2-й столбец. Получаем матрицу размерностью 2*2, находим определитель этой матрицы :

Таким образом, минор - это не матрица, а число.

Пример: найти определитель (в общем виде) матрицы 2*2 разложением по 1) строке; 2) столбцу:

По строке: det A = a 11 *(-1) 1+1 *M 11 +a 12 *(-1) 1+2 *M 12 = a 11 *1*a 22 +a 12 *(-1)*a 21 =
= a 11 *a 22 -a 12 *a 21

По столбцу: det A = a 11 *(-1) 1+1 *M 11 +a 21 *(-1) 2+1 *M 21 = a 11 *1*a 22 +a 21 *(-1)*a 12 =
= a 11 *a 22 -a 21 *a 12

Несложно увидеть, что получен одинаковый результат.

Таким образом, чтобы найти определитель матрицы 2*2 достаточно из произведения элементов главной диагонали вычесть произведение элементов побочной:

Как быстро вычислить определитель третьего порядка?

Для вычисления определителя третьего порядка используют правило треугольника (или "звездочки").

1. Перемножаем элементы главной диагонали: det(A)=11*22*33...

2. К полученному произведению прибавляем произведение "треугольников с основаниями, параллельными главной диагонали": det(A)=11*22*33+31*12*23+13*21*32...

3. Все, что связано с побочной диагональю, берем со знаком "-". Перемножаем элементы побочной диагонали и вычитаем: det(A)=11*22*33+31*12*23+13*21*32-13*22*31...

4. Аналогично "главным треугольникам" перемножаем побочные и вычитаем: det(A)=11*22*33+31*12*23+13*21*32-13*22*31-11*23*32-33*12*21.

det(A)=11*22*33+31*12*23+13*21*32-13*22*31-11*23*32-33*12*21=
=7986+8556+8736-8866-8096-8316=0

Свойства определителя матрицы.

  • При перестановке местами двух параллельных строк или столбцов определителя его знак меняется на обратный;
  • Определитель, содержащий две одинаковых строки или столбца, равен нулю;
  • Если одну из строк определителя умножить на какое-либо число, то получится определитель, равный исходному определителю, умноженному на это число;
  • При транспонировании матрицы её определитель не меняет своего значения;
  • Если в определителе вместо любой строки записать сумму этой строки и любой другой строки, умноженной на некоторое число, то полученный новый определитель будет равен исходному;
  • Если каждый элемент какой-либо строки или столбца определителя представляем в виде суммы двух слагаемых, то этот определитель может быть разложен на сумму двух соответствующих определителей;
  • Общий множитель элементов какой-либо строки или столбца определителя можно выносить за знак определителя.