Как внести в 3д принтер что печатать. Послойное наплавление термопласта

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый , способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё - от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце - это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей - высокая скорость, простота и относительно небольшая стоимость.

Например, для создания или какой-либо детали вручную может понадобиться довольно много времени - от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы - чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге - ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера могут использоваться самые разные материалы. Их физико-механические характеристики могут сильно различаться между собой. Однако ни одному производителю пока не удаётся создать действительно прочный материал. Характеристики смол по прочности сравнимы с эпоксидной смолой.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS - единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология LCD

Ещё недавно, около 2017 года, 3d-принтеры для печати фотополимером были дорогими. Однако изобретение печати на основе проницаемых матриц LCD изменило ситуацию в корне. На середину 2019 года можно приобрести фотополимерный 3d-принтер хорошего качества примерно за 30 000 рублей.

LCD матрица для 3d принтера представляет из себя экран по аналогии с экраном сотового телефона. Сама по себе такая матрица не излучает свет. Она может только изменять степень светопропускания в различных областях. Так формируется картинка слоя печати. А вот источник излучения находится за lcd матрицей. Таким образом для создания подобного 3д-принтера нужно было всего лишь заменить лампу-излучатель на источник ультрафиолетового излучения. Напомним, что подавляющее большинство фотополимеров застывают под действием именно УФ излучения.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области . В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала - из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой - скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь - уже не плод воображения писателей - фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

Сегодня смело можно утверждать: без технологии 3D-печати современную цивилизацию представить невозможно, и вряд ли можно назвать другую так стремительно развивающуюся технологию.

По страницам истории

По мнению многих компьютерных экспертов, родоначальником 3D-печати и разработчиком первого еще обычного принтера стал англичанин Бэббидж. В 1822 году он приступил к созданию так называемой «большой разностной машины», предназначенной для производства расчетов и их распечатки. Как все великое, идеи Бэббиджа намного опередили свое время и, спустя 20 лет, так и не реализованный, проект был закрыт.

Большая разностная машина Бэббиджа

Прошло более 100 лет, прежде чем была предпринята вторая на сей раз более удачная попытка создания принтера. Первый черно-белый принтер увидел свет в 1953 году. Минуло еще 23 года и компания IBM создает первый струйный цветной принтер. Сегодня количество принтеров в офисах и других организациях уступает разве что числу компьютеров.

Во второй половине 80-х годов происходит очередной технологический прорыв. В 1986 году американец Чек Халл сформулировал концепцию трехмерной печати, а через два года его соотечественник Скот Крамп на ее основе разработал технологию FDM — формования через декомпозицию плавящегося материала. Все ныне действующие трехмерные принтеры своим появлением обязаны именно ей.

Как работает 3D-принтер

По сравнению с печатным принтером, переносящим электронный текст на плоскую бумагу, 3D-принтер имеет дело с трехмерной информацией. Одним словом, он воссоздает объект таким, какой он есть.


Как же печатает 3D-принтер? Вначале создается цифровая модель объекта на компьютере с помощью специальной программы. Она как бы «расчленяет» модель на слои, после чего в действие вступает принтер. Как и у его печатающего «собрата», у 3D-принтера есть свои чернила, правда, состоящие из композитного порошка.

Около 10 лет назад использовался всего лишь один вид «чернил» — пластик АВС. Сегодня их уже более сотни – полипропилен, бетон, целлюлоза, нейлон, металлические порошки, гипс, шоколад и множество других.

В процессе работы исходный материал превращается в массу, которая наносится слой за слоем на рабочую поверхность через специальное сопло. После нанесения очередного слоя поверх него может накладываться клеевое покрытие, затем снова слой «чернил». И так до полного воспроизводства объекта. Работу 3D-принтер можно посмотреть на видео.

Но это общий принцип работы 3D-принтера, так называемая технология быстрого прототипирования. На ее основе разработано несколько способов. Вот лишь некоторые из них.

Стереолитография (SLA)

Одна из первых технологий 3D-печати. В качестве строительного материала используется смесь жидкого полимера с реагентом-отвердителем, чем-то похожая на эпоксидную смолу. Полимеризация и последующее отвердение смеси происходит под действием ультрафиолетового лазера.

Модель формируется тонкими слоями на подвижной подложке с отверстиями, прикрепленной к микролифту-элеватору, который перемещается вверх или вниз на глубину одного слоя. Во время погружения в жидкий полимер луч лазера фиксируется на местах, подлежащих отвердению. Как только один слой сформирован, заготовка поднимется (опускается).


Данная технология разработана в компании 3D Systems. Она имеет очень много общего с технологией струйной печати. Особенность устройства и принцип работы этого 3D-принтера состоит в том, что здесь задействовано несколько (до нескольких сот) сопел, расположенных рядами на печатающей головке.


Чернила становятся жидкими посредством нагревания и после послойного нанесения на рабочую поверхность при комнатной температуре застывают. Головка перемещается в горизонтальной плоскости, а вертикальное смещение по мере формирования каждого нового слоя осуществляется за счет опускания рабочего стола.

Выборочное лазерное спекание (SLS)

Настоящим прорывом стало внедрение технологий 3D-печати в металлообработку. Как же работает ? Особенностью этой технологии является то, что функцию рабочей жидкости выполняет композитный порошок, состоящий из частиц диаметром от 50 до 100 мкм. Порошок наносится горизонтально равномерными тонкими слоями, а на завершающем этапе определенные участки спекаются лазерным лучом.

Одно из главных достоинств лазерного спекания – уникальная экономичность и практически полная безотходность по сравнению с традиционными механическими методами обработки металла – сверлением, фрезеровкой, резанием, литьем и другими, а также минимальная финишная обработка.

Необходимое условие лазерного спекания – азотная среда с минимальным содержанием кислорода, поскольку процесс протекает в условиях высоких температур.


Этим перечень технологий 3D-печати далеко не ограничивается. Его дополняют послойное склеивание пленок, послойное наплавление, послойная печать расплавленной полимерной нитью, ультрафиолетовое облучение через фотомаску.

Что бы еще напечатать

Выяснив, как работает 3D-принтер, впору поведать о том, что сегодня можно сделать с его помощью. Подобно модной и очень удобной одежде, его «примеряют» на себя представители самых различных направлений науки и промышленности. Как оказалось, напечатать можно практически все от ширпотреба из пластика, до солнечных батарей, деталей для реактивных двигателей и медицинских протезов.


На технологию 3D-печати «положили глаз» военные и строители. Не так давно на борт МКС был доставлен разработанный по заказу NASA 3D-принтер, с помощью которого в условиях невесомости было изготовлено несколько необходимых инструментов. Вполне возможно, что таким образом во время будущей марсианской миссии отдельные запчасти придется изготавливать прямо на борту космического корабля.


Рассматривается также вариант возведения марсианских домов методом 3D-печати, для чего с Земли туда будут доставлены специальные строительные принтеры. Основой «чернил» для них станет марсианский грунт.

Поступили вопросы как его правильно купить. Делюсь опытом.

Первый принтер, как первая женщина: должен быть у каждого реального пацана, но с какой стороны к нему подходить в школе не сказали. Я вам тут скажу по-секрету, только никому не рассказывайте!
И выбирать первый 3D принтер так же бессмысленно, как выбирать первую женщину, если только не собираетесь умереть с ним в один день. Всякие модные фишки типа автовыравнивания и двойного экструдера гарантируют ощущения зеленого школяра на свидании с сильно образованной барышней: можно долго ходить кругами и так и не получить главного.

Речь идет о принтерах начального уровня за $150 - $300. Для реальных мажоров, покупающих в комплекте с принтером технолога, программиста, схемотехника и массажиста, действуют совсем другие правила.

Правило №1 Брать надо китай в России

Потому что европейские комплектующие, они могут быть качественнее, но разницу новичок скорее всего не поймет. И сломать по неопытности можно все что угодно. Ну, а российское производство при кратно большей цене .

Но, главное "но" в том, что наше российское таможенное законодательство считает принтер за $200 промышленным оборудованием и облагает его ввозной экспортной пошлиной 30%. Это же не игрушка и не управляемая модель. Имеет право, но не всегда им пользуется.

Я лично купил принтер для ребенка в образовательных целях. И вы берете его для ознакомления с аддитивными технологиями, а не для импортозамещения. Но таможня против. Хотя последнее время не лютует.

Поэтому умные китайцы отправляют нам принтеры из России, так что нам не надо общаться с таможней (это ваще отдельный экстрим). Главное найти на aliexpress.com именно умного китайского продавца, предлагающего отправку именно из России, а не из Китая. Не важно как они это делают, важно что это у них получается - проверено.

Ежели вы таки возьмете из-за границы, имейте в виду - все что относится к 3D печати будет облагаться пошлиной 30%. Некоторые попали, но большинство пронесло.

Правило №2 Какую модель 3D принтера лучше брать

Явного лидера в начально-образовательном уровне, как например Лего в начальной робототехнике, еще нет. Поэтому успешно применяется техника выбора "я б вдул": если глядя на фото принтера на страничке продавца в голову приходит такая мысль, то можно брать. Разница между разными моделями не принципиальна: все они печатают, и качество печати достаточно для новичка и недостаточно для промышленного производства. Все остальное на вкус и цвет, и не поймешь пока не попробуешь. Именно на пробу и берется первый принтер.

Правило №3 Как выбрать продавца

Как уже было указано в первом правиле, продавец должен быть умным. И, в-общем-то, это все. Это все, что можно достоверно установить. Все остальное недостоверно.

Одним посылка идет долго, другим быстро. В основном, это наша таможня и почта. Приходят все посылки в Москву, а на растаможку их могут отправить в Брянск или куда подальше. Конечно, потом снова через Москву. Если брать с доставкой из России, задержка по причине таможни исключается.

Продавцы обычно отправляют в течение недели, а если опоздают, то деньги вам вернут автоматом. Одним принтер приходит в целости и сохранности, а другим с поломками и некомплектом. Китайцы тоже халтурят, и у них также может закончиться правильная упаковка. Этого не предугадать. Снимайте на видео весь процесс от получения посылки до проведения инвентаризации ее содержимого, это реально поможет получить компенсацию, если что.

Одним продавец дает ценные советы по сборке и настройке, другим ваще не отвечает. Не рассчитывайте на техподдержку, это же DIY, что переводится на русский "сделай это сам".

Ни отзывы, ни количество заказов, ни обещания продавца не являются решающим фактором выбора продавца. Продавец может поменяться незаметно. Отзывы могут относиться к другому товару. Мухлевать они умеют.

Это лотерея, примите это и не страдайте, если что-то пошло не как хотелось.

Правило №4 Что брать в комплекте

Нет особого смысла выбирать вариант "+ три упаковки пластика в подарок". Это не подарок, это включено в цену. В России пластик стоит не дороже, ищите российские специальные интернет-магазины и берите дешевле, если вам это нужно. Китайский пластик может быть как хорошим, так и плохим.

Набирать разных запчастей особого смысла нет, но если прям очень хочется, то можно и взять. Сопла забиваются, их можно чистить и менять. Нагревательные элементы перегорают. Концевые ограничители барахлят. И т.п., примерно так можно ориентироваться, на свой вкус. Что реально потребуется не угадать, поэтому в идеале удобно брать на запчасти второй такой же принтер, ага.

Точно надо брать прошивку. Это бесплатно, надо просто попросить продавца, чтобы он выслал вам драйвера, firmware и bootloader, а также Arduino IDE пригодную для них. Весит это все в пределах 10Мб, так что емайл подходит.

Точно надо брать программатор. Встречаются посты типа "два дня принтер работал и перестал". Это слетела прошивка. Или слетел загрузчик. Скорее то и другое. Загрузчик это первая часть прошивки, которая запускает основную часть. Для записи на плату принтера загрузчика нужен программатор. Основная прошивка записывается на плату без программатора.

Правило №5 Забудьте про техподдержку

Продавцы не делают 3D принтеры, они их продают. Если в штате продавца случайно окажется кто-то понимающий и у него будет время, вам что-нибудь подскажут. Но 3D это целая наука, миллион нюансов и миллиард вариантов, так что курс лекций вам точно не дадут. Читайте интернет и не расстраивайтесь на китайцев. Все решаемо, нужно просто найти. Если у вас нет времени, не стоит за это браться совсем.

Правило №6 Спорьте

Не надо подтверждать получение на Али при получении посылки. Вы подтверждаете не факт получения, а комплектность и работоспособность. Так что проверяйте. С чувством, с толком, не спеша.

Да, вам напишут и попросят поторопиться. Ответ прост: надо больше времени на проверку.

Если закончилось время, надо открыть спор. Основание спора: возможные дефекты. "Может их и нету, надо разобраться."

Если что-то не получается включить/запустить и китаец не помогает, надо вызывать арбитров Али. Для этого нужно очень подробно изложить что вы ожидали получить (как оно на ваш взгляд должно работать), что вы для этого сделали и что не получилось. Также нужно качественно подготовить фото и видео. На фото надо сделать пометки для пояснений. Видео нужно сделать достаточного качества для спокойного разглядывания.

Залить видео на 500 Мб через великий китайский фаервол непросто, практически невозможно. Поэтому его надо ужать. Это можно сделать на ютубе, там хороший ужимальщик.

От качества подготовки доказательной базы зависит возврат денег. Поэтому надо взять за правило снимать на видео каждый значимый шаг. Получили на почте лепешку из картона - виноват китаец, плохо упаковал. Перепутали провода и все сгорело? Виноват китаец - нет инструкции, провода не помечены. Главное чтобы с той стороны фаервола можно было понять, что вы приложили максимум усилий. Для этого снимать процесс получения на почте, процесс вскрытия, и т.д. и т.п. И чтобы очень было похоже на правду.

И в завершение дам свой кейс по спору.

На второй день принтер не включился.

Как потом выяснилось, если таскать оси руками туда-сюда, моторы работают в режиме генератора и плата от этого не защищена. Не надо двигать моторы руками (быстро).

Открыл диспут.

Китаец предложил попробовать перепрошиться.

Прошивки у китайца не было. Предложил поискать в нете.

Отправил видео процесса неудачной прошивки. Точнее, первая найденная прошивка даже не компилировалась. Китаец в этом ничего не понимал, так что этого оказалось достаточно.

Написал в спор что плата не работает, прошивка не заливается.

Китаец предложил отправить плату на замену.

Я указал, что принтер на ДР ребенка и за две недели плата не дойдет.

Китаец предложил экспресс-отправку. Я согласился.

После получения и проверки трека я закрыл спор.

С пятого - десятого раза нашлась прошивка, для которой удалось подобрать версию IDE для компиляции.

Прошить не получилось. Оставалась возможность слетевшего загрузчика.

Для платы Мелзи есть несколько вариантов загрузчика. С 10 - 20 раза нашелся подходящий загрузчик, он и в норме может шиться не с первого раза.

После прошивки загрузчика основная прошивка заливается без проблем.

Подправил в прошивке настройки под свой принтер и все работает с тех пор без проблем. Вообще без проблем.

Через три недели пришла вторая плата.

Ребенок в восторге. Печатает с удовольствием. Вот вчера напечатал:

Удачи, и да пребудет с вами филамент! :)

И да, кэшбек реально работает. Я проверил и пользуюсь этим . Сейчас там акция и дают еще больше . Вывожу на Мегафон и платить на Али тоже можно со счета телефона (МТС и другие). Так что реально Прюша выходит меньше 10 тыс. руб.

О существовании 3D печати слышал, наверняка, каждый, а в новостях то и дело проскакивают факты о новых возможностях этой технологии. Не так давно трехмерная печать использовалась только в производственных условиях и немногими энтузиастами, сегодня же можно запросто купить 3D принтер для использования в быту. С помощью таких устройств печатают самые разные вещи : от декоративных безделушек для дома до протезов, оружия и даже зданий. Перспективы трехмерной печати настолько фантастические, что мало кто сегодня может в полной мере их себе представить. А пока наблюдаем за тем, как будущее наступает , изучаем принципы работы 3D принтера, его возможности и преимущества, а также разбираемся, какой 3D принтер выбрать для использования в быту.

Несмотря на то, что технология трехмерной печати находится у всех на слуху только последние несколько лет, ее появление стоит искать еще в прошлом веке. Пионером в данной области стала компания Charles Hull, которая в 1984 году разработала технологию трехмерной печати, а чуть позже запатентовала технику стереолитографии, которая сегодня используется повсеместно. Тогда же компания разработала и создала первый промышленный трехмерный принтер, который фактически стал началом новой эпохи.

90-е годы стали временем появления новых разработок в сфере трехмерной печати, благодаря которым 3D принтеры нашли применение в производственных условиях и стали использоваться для прототипирования. Пик развития технологии приходится на XXI век, и мы сами становимся очевидцами того, как семимильными шагами трехмерная печать покоряет новые вершины. Сегодня печать может осуществляться разными материалами, причем не только пластиками и металлом , но и тканью, бумагой, керамикой, пищевыми продуктами и даже живыми клетками.

В 2005 году появилась возможность печатать в цвете, а в 2006 году был создан принтер, который может распечатать около половины всех собственных комплектующих. В 2014 году появились первые принтеры с областью печати, практически неограниченной в размере. С помощью этого устройства уже попытались создать полноценный дом, используя в качестве основного материала бетон. На возведение такого сооружения было потрачено не более суток. Уже в 2016 году было представлено первое здание, построенное с помощью трехмерной печати в Дубае. В феврале 2017 года Россия также представила дом, целиком напечатанный на стройплощадке. В этом году также был разработан принтер с шестью осями, с помощью которого сложные элементы будет печатать намного проще, без необходимости использовать поддерживающие конструкции. На данный момент вовсю ведутся разработки принтеров, которые смогут печатать органы человека, протезы, имплантаты, корпусы автомобилей и даже еду.

Как работает 3D принтер? Просто о сложном

Если коротко, то 3D принтер – это устройство для создания трехмерных объектов методом послойной печати. Спектр используемых для печати материалов постоянно расширяется и можно смело предполагать, что в будущем он будет включать большинство известных нам веществ. Пока самыми популярными материалами для печати остаются термопластики и фотополимерные смолы.

Общий принцип работы 3 D принтера можно представить следующим образом:


Особенности печати зависят той технологии, которую использует принтер, поэтому имеет смысл разобраться с самыми распространенными на данный момент.

Типы 3D-принтеров и особенности печати каждого

Чаще всего сегодня используют технологию FDM -печати, а также SLA -печати. Что стоит за этими непонятными аббревиатурами, и какими еще разработки существуют в данной сфере?

Метод FDM-печати

FDM -технология (Fused Deposition Modeling) – это технология послойного наплавления нити. Сегодня этот способ 3D-печати считается самым распространенным, одновременно он относится и к одним из самых старых методов. Принцип заключается в послойном наплавлении нити пластика по контуру модели.

Для печати используются термопластики, которые поставляются в виде катушек или прутков. Чаще всего печатают PLA и ABS пластиками , в числе которых нейлон, полиамид, поликарбонат, PET (он же полиэтилентерефталат, который используется для создания пластиковых бутылок) и некоторые другие вещества.

Принцип работы заключаются в следующем:

  • нить материала помещается в экструдер, где она плавится под воздействием нагревательного элемента, а потом выдавливается через сопло на рабочую поверхность;
  • экструдер двигается по траектории, заданной ей программным обеспечением, и слой за слоем строит объект;
  • если необходимо напечатать сложный предмет, то могут использоваться два типа материала: один – для модели, второй – для создания опор (он, как правило, растворимый, или же просто очень легко отламывается от объекта). Опоры необходимо печатать , если объект имеет повисшие в воздухе элементы, которые без поддерживающих элементов создать невозможно – принтеру будет просто не на чем печатать. Наглядно все представлено на рисунках ниже;
  • после формирования первого слоя платформа опускается вниз на толщину одного слоя, а экструдер выдавливает новую порцию материала, процесс повторяется много раз;
  • по окончанию печати остается отделить вспомогательные элементы.

Модель и поддерживающие элементы

FDM-технология позволяет использовать термопластики производственного класса, поэтому распечатанные объекты получают отличную механическую, химическую и термическую прочность. Технология простая, чистая и пригодна для использования в условиях офиса или дома.

По такому же принципу работают 3 D -ручки. Это фактически миниатюрные принтеры. Такие ручки предназначены для рисования трехмерных рисунков. Пользователь может выдавливать из нее мгновенно застывающий пластик, придавая ему любую форму и получая забавные изделия. Устройство больше предназначено для баловства, но идея интересная, а дизайнеры смогут сделать много интересных предметов декора для дома.

Метод SLA-печати, или стереолитография

SLA-технология (laser stereolithography) предполагает использование для печати жидких фотополимерных смол, которые имеют свойство застывать под воздействием лазера или подобного источника энергии. Метод позволяет получать предметы с очень точной геометрией , ведь толщина слоя может достигать рекордных 15 микрон, поэтому уже широко применяется в стоматологии при изготовлении имплантатов и в ювелирном деле для создания заготовок с обилием сложных деталей.

Принцип работы 3 D -принтеров , использующих метод лазерной стереолитографии, коротко можно описать так:

  • рабочая платформа погружается в ванну с жидким фотополимером на толщину одного слоя (15-150 микрон);
  • воздействие лазера на стенки будущего объекта. Лазерный луч в буквальном смысле вычерчивает на фотополимере форму объекта, которая, в свою очередь, задается программным обеспечением. Облучение лазера вызывают полимеризацию материала в точках соприкосновения с лучом и его затвердевание;
  • платформа погружается еще чуть глубже в ванну с жидким фотополимером, причем глубина погружения соответствует величине слоя. Лазер снова воздействует на зоны материала, которые должны быть частями печатаемого объекта;
  • процесс повторяется слой за слоем, пока не будет распечатан смоделируемый объект;
  • технология также требует печати поддерживающих элементов. Они выполняются из того же фотополимера;
  • после завершения печати объект погружают в ванну в специальные растворы для удаления излишков и очистки модели;
  • финал – облучение ультрафиолетом для окончательного застывания фотополимера.

Технология прогрессивная, но требует покупки дорогих расходных материалов.

Другие типы печати

Менее распространенными, но не менее интересными и перспективными являются следующие способы трехмерной печати:

Какой 3D-принтер лучше выбрать для бытового использования?

Забегая наперед, отметим, что пока стоимость бытовых 3D-принтеров остается относительно высокой, но в дальнейшем имеем все шансы наблюдать удешевление технологии. Вспомните, когда появились мобильные телефоны, они также были доступны только очень богатым людям.

Цели использования домашнего 3Д-принтера могут быть совершенно любыми: от простого баловства и знакомства с новой технологии до печати полезных в хозяйстве мелочей и моделей-прототипов для бизнеса. В любом случае, при выборе обращайте внимание на такие ключевые характеристики устройства:

  • разрешение печати (точность печати) – это минимально возможная высота слоя, которую может напечатать принтер. Обозначают разрешение в микрометрах (тысячная доля миллиметра). Чем меньше высота слоя, тем менее заметным будет переход между ними, и тем более гладкой будет поверхность печатаемого объекта. С другой стороны, чем меньше слой, тем больше времени принтеру понадобится на печать и тем выше нагрузка на все его элементы. Разрешение зависит от технологии (SLA позволяет печатать точнее, чем FDM), точности работы печатающих головок, настроек программного обеспечения и выбранного материала для печати;

    Образцы с разной толщиной слоя

  • скорость печати напрямую зависит от точности: чем выше точность, тем меньше скорость выращивания модели.
  • область печати говорит о том, какого размера объект можно напечатать на принтере. Другими словами, это зона возможной досягаемости печатающей головки по горизонтальным осям X и Y, а также по вертикальной оси Z. Обычно область печати выражают тремя цифрами – это высота, длина и ширина условного параллелепипеда (например, 20*30*30 мм). У дельта-принтеров область печати имеет форму цилиндра, поэтому указывается его высота и диаметр;
  • тип используемых для печати пластиков. В бытовых условиях используются именно пластики, и это могут быть ABS и PLA пластики, некоторые модели могут печатать обоими видами материалов. Возможность печати тем или иным типом пластиков объясняется наличием или отсутствием подогрева платформы. Если вы пока не решили, чем будете печатать, то лучше выбрать модель, которая поддерживает максимальное количество материалов;
  • страна-производитель . Европейские страны и США производят качественные, но дорогие устройства, завозятся в небольших количествах, сервисное обслуживание затруднено. Китайские устройства стоят недорого, качество часто оставляет желать лучшего, но для того, чтобы побаловаться, такие принтеры пойдут. Есть еще принтеры российского производства: при неплохом качестве они радуют возможностью сервисного обслуживания.

Интересные варианты бытовых 3D-принтеров

MakerBot Replicator 2

Качественный принтер американского производства, печатает по FDM-технологии, минимальная толщина слоя – 100 микрон (0,1 мм). Область печати – 285*153*155 мм, для печати используются PLA и ABS пластики. Максимальная скорость печати – 40 мм в секунду, или 24 см 3 /час. Корпус выполнен из стали, есть ЖК-экран, вес 11,5 кг. Модель хоть и выпущена в 2013 году, до сих пор активно используется для бытовой печати. Стоимость 3100$.

PrintBox3D One

Принтер отечественного производства, печатает по технологии FDM, минимальная толщина слоя – 50 мкм, размеры рабочей платформы – 185*160*150 мм. Устройство печатает ABS и PLA пластиками, оснащено подогреваемой платформой. Цена около 1700$, разработано для использования в сфере образования и дизайна.

Wanhao Duplicator i3 v2

Бюджетный вариант для тех, кто хочет освоить технологию и побаловаться. Стоит около 500$, печатает разными видами пластика с точностью до 100 мкм, область печати 200*200*180 мм. Качество сборки отличное.

PICASO 3D Designer

Печатает по FDM-технологии, как и все бытовые 3D-принтеры на сегодняшний день, использует для печати ABS и PLA пластики, в т.ч. нейлон. Точность печати – 50 мкм, рабочая платформа размерами 200*200*210 мм, максимальная скорость – 30 см 3 /час. Устройство оснащено подогреваемой платформой, стоимость 1700$.

3D принтер Hercules

Неплохое устройство от российской компании IMPRINTA, печатает разными видами пластика, точность печати – 50 мкм. Платформа подогреваемая, максимальная температура – 120 0 С. Скорость печати – 40 см 3 /час. Цена 1150$.

В качестве итога об основных плюсах и минусах трехмерной печати

3D-печать – направление перспективное и с большим потенциалом. Чтобы расставить все точки над «i» в изучении вопроса трехмерной печати, приведем основные ее преимущества:


Существующие минусы :


Трехмерная печать – это будущее медицины и промышленности, а также возможность быстрого создания прототипов и моделей, а это бесценно для инженерии. Кто знает, может, через 5-10 лет мы так же просто будем скачивать модели чашек или обуви и печатать их на собственном домашнем принтере, как сегодня скачиваем и просматриваем фильмы.

3D печать основана на технологии послойного выращивания твёрдых объектов из различных материалов. Объёмные модели печатаются из пластика, бетона, гидрогеля, металла и даже из живых клеток и шоколада. В настоящей статье мы представим краткий обзор наиболее популярных материалов для 3D печати .

ABC-пластик

АBC-пластик известен как акрилонитрилбутадиенстирол. Это один из лучших расходных материалов для 3D печати. Такой пластик не имеет запаха, не токсичен, ударопрочен и эластичен. Температура плавления АВС-пластика составляет от 240°С до 248°С. Он поступает в розничную продажу в виде порошка или тонких пластиковых нитей, намотанных на бобины.

3D модели из АВС-пластика долговечны, но не переносят прямой солнечный свет. С помощью такого пластика можно получить только непрозрачные модели.

АВС-пластик для 3D печати

Акрил

Акрил используется в 3D печати для создания прозрачных моделей. При использовании акрила необходимо учитывать следующие особенности: для данного материала нужна более высокая температура плавления, чем для АВС-пластика, и он очень быстро остывает и твердеет. В разогретом акриле появляется множество мелких воздушных пузырьков, которые могут вызвать визуальные искажения готового изделия.

Изделия, напечатанные из акрила

Бетон

В настоящее время изготовлены пробные образцы 3D принтеров для печати бетоном . Это огромные печатающие устройства, которые кропотливо, слой за слоем, «печатают» из бетона строительные детали и конструкции. Такой 3D принтер может всего лишь за 20 часов «напечатать» жилой двухэтажный дом общей площадью 230 м2.

Для 3D печати используется усовершенствованный сорт бетона, формула которого на 95% совпадает с формулой обычного бетона.

Изделия, напечатанные бетоном

Гидрогель

Учёные из иллинойского Университета (США) напечатали при помощи 3D принтера и гидрогеля биороботов длиной 5-10 мм. На поверхность биороботов поместили клетки сердечной ткани, которые распространились по гидрогелю и начали сокращаться, приводя в движение робота. Такие роботы из гидрогеля способны передвигаться со скоростью 236 микрометров в секунду. В будущем они будут запускаться в организм человека для обнаружения и нейтрализации опухолей и токсинов, а также для транспортировки лекарственных препаратов к месту назначения.

Биороботы из гидрогеля, напечатанные 3D принтером

Бумага

В некоторых 3D принтерах в качестве материала для печати используется обычная бумага формата А4. Так как бумага - это доступный и недорогой материал, то и бумажные модели получаются недорогими и доступными для пользователей. Такие модели печатаются послойно, причём каждый последующий слой бумаги вырезается принтером и наклеивается на предыдущий. Модели из бумаги печатаются быстро, но не могут похвастаться прочностью или эстетичностью. Они идеально подойдут для быстрого прототипирования компьютерного проекта.

3D модели, напечатанные из бумаги

Гипс

В современной 3D печати широко применяются гипсовые материалы. Модели, изготовленные из гипса, недолговечны, но имеют очень низкую себестоимость. Такие модели идеально подходят для изготовления объектов, предназначенных для презентаций. Их можно показывать в качестве образца заказчикам и клиентам, они отлично передадут форму, структуру и размер оригинального изделия. Так как гипсовые модели отличаются высокой термостойкостью, их используют в качестве образцов для литья.

3D модель, напечатанная из гипса

Деревянное волокно

Изобретатель Кай Парти разработал специальное деревянное волокно для 3D печати. Волокно состоит из дерева и полимера и по своим свойствам похоже на полиактид (PLA). Комбинированный материал позволяет получить долговечные и твёрдые модели, которые внешне выглядят как деревянные изделия и имеют запах свежеспиленного дерева. В настоящее время инновационный материал используется только в самореплицирующихся принтерах RepRap.

3D модель, напечатанная деревянным волокном

Лёд

В 2006 году два канадских профессора получили грант на развитие технологии 3D печати ледяных фигур. За три года они научились создавать при помощи 3D принтеров небольшие ледяные предметы. Печать протекает при температуре -22°С, в качестве расходных материалов используются вода и метиловый эфир, подогретый до температуры 20°С.

Фигура, напечатанная льдом

Металлический порошок

Ни один пластик не сможет заменить металл с его приятным мягким блеском и высокой прочностью. Поэтому в 3D печати очень часто используется порошок из лёгких и драгоценных металлов: меди, алюминия, их сплавов, а также золота и серебра. Однако металлические модели не обладают достаточной химической стойкостью и имеют высокую теплопроводность, поэтому в металлический порошок для печати добавляют стекловолоконные и керамические вкрапления.

Украшения из металлического порошка, напечатанные 3D принтером

Нейлон

Печать нейлоном имеет много общего с печатью АВС-пластиком. Исключениями являются более высокая температура печати (около 320°С), высокая способность впитывать воду, более продолжительный период застывания, необходимость откачки воздуха из экструдера из-за токсичности компонентов нейлона. Нейлон - это достаточно скользкий материал, для его применения следует оснастить экструдер шипами. Несмотря на перечисленные недостатки, нейлон с успехом используют в 3D печати, так как детали из данного материала получаются не такими жёсткими, как из АВС-пластика, и для них можно использовать шарниры скольжения.

Нейлоновая нить для 3D печати

Изделия из нейлона, напечатанные 3D принтером

Поликапролактон (PCL)

Поликапролактон близок по свойствам к биоразлагаемым полиэфирам. Это один из самых популярных расходных материалов для 3D печати. Он имеет низкую температуру плавления, быстро затвердевает, обеспечивает прекрасные механические свойства готовых изделий, легко разлагается в человеческом организме и безвреден для человека. Кроме того, он может применяться сразу в нескольких технологиях 3D печати: SLS, ZCorp и FDM.

Поликапролактон для 3D принтера

Поликарбонат (PC)

Поликарбонат - это твёрдый пластик, который способен сохранять свои физические свойства в условиях экстремально высоких и экстремально низких температур. Обладает высокой светонепроницаемостью, имеет высокую температуру плавления, удобен для экструзионной обработки. При этом его синтез сопряжён с рядом трудностей и экологически не безвреден. Используется для печати сверхпрочных моделей в нескольких технологиях 3D печати: SLS, LOM и FDM.

Полилактид (PLA)

Полилактид - это самый биологически совместимый и экологически чистый материал для 3D принтеров. Он изготавливается из остатков биомассы, силоса сахарной свёклы или кукурузы. Имея массу положительных свойств, полилактид имеет два существенных недостатка. Во-первых, изготовленные из него модели недолговечны и постепенно разлагаются под действием тепла и света. Во-вторых, стоимость производства полилактида очень высока, а значит и стоимость моделей будет значительно выше аналогичных моделей, изготовленных из других материалов. Используется в технологиях 3D печати: SLS и FDM.


Полилактидная нить и изделия, напечатанные полилактидом на 3D принтере

Полипропилен (PP)

Полипропилен - это самая лёгкая из всех ныне существующих пластических масс. По сравнению с полиэтиленом низкого давления хуже плавится и лучше противостоит истиранию. При этом уязвим к активному кислороду и деформируется при отрицательных температурах.

Полипропилен для 3D печати

Полифенилсульфон (PPSU)

Данный материал пришёл в 3D печать из авиапромышленности. Он практически не горит, характеризуется теплостойкостью, высокой твёрдостью. Напоминает обычное стекло, но превосходит его по прочности. Используется в технологиях 3D печати: SLS и FDM.

Полиэтилен низкого давления (HDPE)

Это самый распространённый вид пластмассы в мире, из которого изготавливают ПЭТ-бутылки, канистры, трубы, плёнки, пакеты и т.д. В 3D печати полиэтилен низкого давления является непревзойдённым лидером. Данный материал может быть использован в любой технологии 3D печати.


Полиэтиленовая обувь, напечатанная на 3D принтере

Шоколад

Британские учёные представили публике первый шоколадный 3D принтер, который печатает любые шоколадные фигурки, заказанные оператором. Принтер наносит каждый следующий слой шоколада поверх предыдущего. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.

Шоколадный принтер в работе

Прочие материалы

Существуют 3D принтеры, которые предназначены для печати глиняными смесями, известковым порошком, продуктами питания, живыми органическими клетками и многими другими удивительными материалами. О том, какие материалы для 3D печати будут использоваться в ближайшем будущем, остаётся лишь догадываться.