Этапы репродукции вирусов в клетке. Стадии репродукции вирусов

Оглавление темы "Вирусология. Репродукция вирусов. Генетика вирусов.":
1. Вирусология. История вирусологии. Шамберлан. Ру. Пастер. Ивановский.
2. Репродукция вирусов. Репродукция +РНК-вирусов. Пикорнавирусы. Репродукция пикорнавирусов.
3. Тогавирусы. Репродукция тогавирусов. Ретровирусы. Репродукция ретровирусов.

5. Репродукция ДНК-вирусов. Репликативный цикл ДНК-содержащих вирусов. Репродукция паповавирусов. Репродукция аденовирусов.
6. Репродукция герпесвирусов. Репликативный цикл герпесвирусов. Поксвирусы. Репродукция поксвирусов.
7. Репродукция вируса гепатита В. Репликативный цикл вируса гепатита В.
8. Генетика вирусов. Характеристика вирусных популяций. Генофонд вирусных популяций.
9. Мутации вирусов. Спонтанные мутации вирусов. Индуцированные мутации вирусов. Проявление мутаций вирусов в фенотипе.
10. Генетические взаимодействия между вирусами. Рекомбинации и перераспределение генов вирусами. Обмен фрагментами генома вирусами. Антигенный шифт.

-РНК-вирусы проникают в клетку путём слияния (парамиксовирусы) либо виропексиса (рабдо- и ортомиксовирусы). Для эффективной репродукции вирусная -РНК должна быть преобразована в +РНК - аналог клеточной мРНК (рис. 5-3).

Рис. 5-3. Репродуктивный цикл -РНК-содержащих вирусов . Проникновение вируса в клетку происходит после его адсорбции и слияния с клеточной оболочкой (1). После высвобождения вирусной -РНК происходит синтез +РНК на матрице -РНК, катализируемый РНК-зависимой РНК-пол имеразой, входящей в состав вириона (2), что приводит к образованию полных и коротких нитей. Короткие +РНК-нити участвуют в синтезе ферментов и белков для дочерних популяций (3). Среди последних особую значимость имеют белок М (4) и гликопротеины оболочки, встраивающиеся в клеточную стенку на этапах, предшествующих отпочковыванию. Полная цепь +РНК служит матрицей для синтеза молекул -РНК дочерних популяций (5). Вирионы дочерних популяций собираются на участках клеточной мембраны, модифицированных белком М (6), и высвобождаются почкованием, захватывая её фрагмент, служащий в дальнейшем суперкапсидом (7).

-РНК-вирусы. Репродукция -РНК-вирусов

Ранняя стадия репродукции . После высвобождения генома вирусная транскриптаза (РНК зависимая РНК-полимераза) запускает синтез +РНК. При этом «шаблоном» для вирусной транскриптазы служит вирусный рибонуклеопротеин (то есть РНК и внутренние белки) В результате образуются полные и короткие молекулы-копии +РНК.

Поздняя стадия репродукции . Полные плюс-нити служат матрицами для синтеза молекул -РНК, составляющих геномы дочерней популяции. Короткие плюс-нити участвуют в синтезе ферментов и белков. Вирусные белки (гемагглютинин и нейраминидаза) взаимодействуют участками клеточной мембраны. Там же сорбируются и вирусные М-белки (белки матрикса) Они проявляют выраженную гидрофобность за счёт содержания до 75% нейтральных аминокислот. Это свойство даёт им способность взаимодействовать с белками и липидами клеточные мембраны и быть посредником сборки вирусных частиц. С одной стороны, М-белок распознает участки включения гликопротеинов вируса в мембрану, с другой - его специфически распознает нуклеокапсид и связывается с ним. Сборка дочерних популяций завершается после присоединения нуклеокапсида к клеточной мембране. Их высвобождение происходит путём почкования через модифицированные участки мембраны. Отпочковывающиеся вирусные частицы захватывают её фрагменты, служащие в дальнейшем суперкапсидами.


Репродукция вирусов с двухнитевыми РНК

Двухнитевые РНК-вирусы представлены семейством Reoviridae (рео- и ротавирусы). Они не имеют суперкапсида и организованы по типу кубической симметрии. С вирусной РНК связана РНК-зависимая РНК-полимераза. Вирусы отличает удлинённый репродуктивный цикл и тенденция к накоплению продуктов вирусспецифического синтеза внутри клеток. После высвобождения генома в цитоплазме клеток РНК-полимераза осуществляет синтез молекул мРНК (+РНК на одной нити -РНК. В результате образуется до 11 функциональных молекул мРНК, соответствуюших по размерам 11 сегментам одной нити -РНК. Молекулы транслируются в 11 первичных полипептидных продуктов. Их последующее расщепление приводит к образованию в заражённых клетках до 16 вторичных полипептидов. Семь первичных и два вторичных полипептида входят в состав вирусных частиц, остальные первичные и вторичные полипептиды выполняют каталитические и регуляторные функции. Параллельно, синтезированная в ходе трансляции вирусная РНК-полимераза запускает синтез минус-нитей на матрице +РНК с последующим их соединением в двухнитевую молекулу РНК. Выход образовавшихся вирионов сопровождается гибелью клетки.

Отношения вируса с клеткой хозяина могут складываться по-разному. Условно эти отношения можно свести к трем типам.

Продуктивная инфекция: цикл репродукции вируса в клетке хозяина завершается образованием нового, многочисленного поколения вирусов, обычно сопровождается гибелью клетки хозяина.

Абортивная инфекция имеет место, если цикл репродукции вируса в клетке хозяина внезапно прерывается. Клетка хозяина сохраняет свою жизнедеятельность.

Вирогения характеризуется интеграцией (встраиванием) вирусной нуклеиновой кислоты в геном клетки хозяина, что приводит в дальнейшем к синхронной репликации ДНК клетки и нуклеиновой кислоты вируса. Клетка хозяина продолжает жить.

Размножение вирусов осуществляется путем репродукции их в клетке хозяина. Цикл репродукции представляет собой процесс подчинения клеточных механизмов чужеродной вирусной информации.

Функционально ферменты вирусов можно подразделить на 2 группы: ферменты, способствующие проникновению вирусной нуклеиновой кислоты в клетку и выходу образовавшихся вирионов в среду, и ферменты, участвующие в процессах транскрипции и репликации вирусной нуклеиновой кислоты.

Цикл репродукции можно подразделить на отдельные стадии.

1 стадия – хемосорбция вирусов на поверхности клетки хозяина

Хемосорбция возможна лишь при условии, если клетка несет на своей поверхности чувствительные рецепторы, комплементарные рецепторам данного вируса. В клетках животных и человека функцию рецепторов для пикорно- и арбовирусов выполняют липопротеиды, для миксо- и парамиксовирусов и аденовирусов – мукопротеиды.

У простоорганизованных вирусов рецепторами являются уникальные сочетания белковых субъединиц, находящихся на поверхности капсида. У более сложноорганизованных вирусов функцию рецепторов выполняют выросты суперкапсида в виде шипов или ворсинок.

2 стадия – проникновение вируса в клетку хозяина.

Пути проникновения вирусов в клетку могут быть различны. Предполагается, что многие вирусы проникают в клетку путем пиноцитоза , иливиропексиса . При пиноцитозе в районе хемосорбции вируса клеточная мембрана образует инвагинацию и заглатывает вирус. В составе пиноцитарной вакуоли вирус попадает в цитоплазму.

Некоторые вирусы проникают в клетку за счет слияния клеточных и вирусных мембран.

Проникновение фаговой ДНК в бактериальную клетку происходит за счёт частичного разрушения оболочки клетки фаговым лизоцимом и сократительной реакции остатка фага.

3 стадия – депротеинизация вируса.

Процесс депротеинизации вируса предусматривает освобождение его нуклеиновой кислоты от белков капсида. Как только вирусная нуклеиновая кислота освобождается от белков капсида, наступает так называемый скрытый период – периодэклипса . Предполагается, что в период эклипса вирусная нуклеиновая кислота проходит по цитоплазме клетки в район ядра.

4 стадия – синтез компонентов вируса.

Совокупность процессов этой стадии можно подразделить на три этапа:

Первый этап – подготовительный. Он предусматривает две цели: подавить функционирование генетического аппарата клетки, прекратить синтез клеточных белков и нуклеиновых кислот, перевести белок-синтезирующий аппарат клетки под контроль генома вируса; подготовить условия для репликации нуклеиновой кислоты и синтеза белков капсида вируса.

Второй этап – репликация нуклеиновой кислоты вируса. Для двухцепочечных ДНК – геномных вирусов характерен такой же путь реализации генетической информации, как и для других живых организмов. Процессу репликации ДНК предшествует транскрипция иРНК. Информационная РНК вируса транслируется рибосомами клетки и на вирус – полисоме по матрице иРНК идет синтез ранних вирусспецифических белков.

Как только синтезировались ранние вирусспецифические белки, начинается процесс репликации ДНК вируса. Репликация двух – цепочечной ДНК вируса идет по принципу репликации ДНК клеточных организмов полуконсервативным путем.

Процесс репликации одноцепочечной ДНК начинается с синтеза ее комплементарной пары. В результате образуется двухцепочечная кольцевая родительская ДНК.

Изучение механизма репликации РНК – геномных вирусов началось с 1961., когда были открыты РНК-геномные фаги.

У РНК-геномных вирусов молекула РНК одновременно является генетическим материалом и выполняет функцию иРНК и ДНК.

В 1970 г. в составе одноклеточных РНК-вирусов был обнаружен фермент РНК-зависимая ДНК-полимераза, свидетельствующая о наличии процесса обратной транскрипции. Позднее было доказано, что у онкогенных РНК-вирусов по матрице их РНК с участием РНК-зависимой
ДНК-полимеразы, содержащейся в вирионе, траскрибируется ДНК-копия. ДНК-копия из одноцепочечной переходит в репликативную двуцепочечную форму, которая обеспечивает репликацию РНК вируса и синтез необходимых ферментов.

Третий этап – синтез белков капсид.

Этот процесс отстает во времени от процесса репликации нуклеиновой кислоты вируса и начинается, когда репликация в полном разгаре. Синтез белков капсида происходит как в ядре, так и в цитоплазме клетки. Вирусспецифическая иРНК транслируется рибосомами клетки, и на вирус-полисоме идет синтез белков-предшественников. Из этого «фонда» белков-предшественников и формируются белки капсида вируса.

5 стадия – сборка вирионов, или морфогенез вируса.

У простоорганизованных вирусов белковые субъединицы капсида в строго упорядоченном соединении располагаются вокруг нуклеиновой кислоты. У сложноорганизованных вирусов в процессе сборки вирионов принимают участие и клеточные структуры – ядерная и цитоплазматическая мембраны.

6 стадия – выход вируса из клетки.

Этот процесс у разных вирусов осуществляется по-разному. Выход ДНК-геномных фагов происходит при полном лизисе клетки фаговым лизоцимом. Сложноорганизованные вирусы человека и животных выходят из клетки с участком цитоплазмы путем почкования через цитоплазматическую мембрану и оболочку, одновременно приобретая суперкапсид. Нередко выходу вирусов из клетки способствует переваривание ее фагоцитами крови. Вирусы растений из клетки в клетку могут переходить через межклеточные соединения – плазмодесмы.

Наиболее часто цикл репродукции вируса завершается продуктивной инфекцией – образованием многочисленной популяции (100–200) полноценных вирионов, что обычно сопровождается гибелью хозяина.

  • 4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
  • 5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
  • 6. Методы окраски микробов и их отдельных структур.
  • 7. Морфология и химический состав бактерий. Протопласты. L – формы бактерий.
  • 8. Ультраструктура бактерий.
  • 9. Спорообразование у бактерий. Патогенные спорообразующие микробы.
  • 10. Капсулы у бактерий. Методы их обнаружения.
  • 11. Жгутики и включения у бактерий. Методы их обнаружения.
  • 14. Рост и размножение бактерий. Кинетика размножения бактериальной популяции.
  • 15. Морфология и ультраструктура риккетсий. Морфология и ультраструктура хламидий. Патогенные виды.
  • 16. Морфология и ультраструктура спирохет. Классификация, патогенные виды. Методы выделения.
  • 17. Морфология и ультраструктура микоплазм. Патогенные для человека виды.
  • 18. Систематика и номенклатура вирусов. Принципы современной классификации вирусов.
  • 19. Эволюция и происхождение вирусов. Основные отличия вирусов от бактерий.
  • 20. Морфология, ультраструктура и химический состав вирусов. Функции основных химических компонентов вируса.
  • 21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.
  • 22. Вирусологический метод диагностики. Методы культивирования вирусов.
  • 23. Культуры клеток. Классификация клеточных культур. Питательные среды для культур клеток. Методы индикации вирусов в культуре клеток.
  • 24. Морфология, ультраструктура и химический состав фагов. Этапы репродукции фагов. Различия между вирулентными и умеренными фагами.
  • 25. Распространение фагов в природе. Методы обнаружения и получения фагов. Практическое использование фагов.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.
  • 27. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 28. Ферменты бактерий, их классификация. Принципы конструирования питательных сред для изучения ферментов бактерий.
  • 29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.
  • 30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.
  • 31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.
  • 32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.
  • 34. Взаимоотношения между микроорганизмами в ассоциациях. Микробы – антагонисты, их использование в производстве антибиотиков и других лечебных препаратов.
  • 35. Влияние на микробы физических, химических и биологических факторов.
  • 36. Стерилизация и дезинфекция. Методы стерилизации питательных сред и лабораторной посуды.
  • 38. Формы и механизмы наследственной изменчивости микроорганизмов. Мутации, репарации, их механизмы.
  • 43. Генетика вирусов. Внутривидовой и межвидовой обмен генетическим материалом.
  • 44. Основные группы антимикробных химиопрепаратов, применяемых в терапии и профилактики инфекционных болезней.
  • 45. Антибиотики. Классификация. Механизмы действия антибактериальных препаратов на микробы.
  • Репродукция вируса в клетке происходит в несколько фаз:

      Первая фаза - адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

      Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

      Третья фаза - «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.

    В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

      Репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

      Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу.

      Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

    РНК ->белок

      Рибовирусы с негативным геномом (минус- нитевые): грипп, корь, паротит, орто-, парамиксовирусы.

    (-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

      Ретровирусы

    (-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента - РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы)

      Четвертая фаза - синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

      Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

      Шестая фаза - выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

    Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

    Иной путь - интегративный - заключается в том, что после проникновения вируса в клетку и "раздевания" вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого прови-руса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.

    Кроме обычных вирусов, существуют прионы - белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

    Методы индикации вирусов в исследуемом материале.

    О репродукции вирусов в культурах клеток судят по их цитопатическому действию (ЦПД), которое носит разный характер в зависимости от вида вируса, по бляшкообра- манию на клеточном монослое, покрытом тонким агаровым слоем, гемадсорбции эритроцитов и другим тестам.

    Таким образом, индикация вирусов производится микроскопически по наличию ЦПД, бляшкообразованию на клеточном монослое, гемадсорбции эритроцитов, добавленных к клеточной культуре вируса, а также в реакции гемагглютинации с исследуемым вируссодержащим материалом. Реакцию гемагглютинации вызывают вирусы, содержащие в составе своего капсида или суперкапсида гемагглютинин.

    Репродукция вирусов

    Для вирусов характерен дизъюнктивный (от disjuncus -- разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина. Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз: проникновение в клетку хозяина, синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот, синтез вирусных частей, сборка и композиция зрелых вирионов, выход зрелых вирионов из клетки.

    Фаза I -- адсорбция вириона на поверхности клетки.

    Протекает в две стадии: первая -- неспепифическая, когда вирус удерживается на поверхности клетки благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

    Вторая стадия -- специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидашг (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы -- на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита -- на липопротеидах.

    Фаза II -- проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона -- растворение белковой оболочки и освобождение нуклеиновой кислоты.

    Фаза III -- скрытый период (период эклипса -- исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

    Фаза IV -- синтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет Функцию рибосом. Ранние белки подразделяются на:

    а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

    б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

    Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

    Фаза V -- формирование зрелых вирионов. Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

    Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса -- для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5--6 ч после инфицирования клеток и продолжается в течение последующих 7--8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

    Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

    Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойств вами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

    Фаза VI -- выход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки: 1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал; 2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

    Особенности репродукции вирусов

    1. Периоды осуществления продуктивной вирусной инфекции

    2. Репликация вируса

    3. Трансляция

    1. Продуктивная вирусная инфекция осуществляется в 3 периода:

    · начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под действием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникальная биологическая структура: инфицированная клетка содержит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

    · после этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот процесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат -- синтетическими системами клетки.

    2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генетической информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотических, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить -- так называемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

    3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусспецифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

    У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуществляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза -- это геномный белок, который есть у всех РНК-содержащих вирусов. Репликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

    У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

    У некоторых РНК-содержащих вирусов (реовирусы) имеется совершенно уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом -- ревертазой (обратной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

    Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

    После этого наступает третий, заключительный период взаимодействия вируса и клетки. Из структурных компонентов (нуклеиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

    Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последовательности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репродукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализована не будет и репродукции вируса не происходит, а клетка сохраняет свои функции неизменными. вирион клетка вирус

    При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирусиндуцированных трансформациях вирусный геном становится частью клеточного, функционирует и наследуется вместе с ним.

    Список литературы

    1. В. А. Сергеев и др., «Ветеринарная вирусология». - Москва, 2002.

    2. Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989.

    3. Госманов Р.Г., Колычев Н.М. Ветеринарная вирусология. М.: КолосС. - 2003.

    4. Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология: Учебник для вузов (под ред. Белоусовой Р.В.). - М.: КолосС. - 2007