Что умнее человек или компьютер. Почему лучший компьютер по-прежнему уступает человеческому мозгу? В чем человек лучше компьютера

Крамник получит за участие в матче 500 тысяч долларов, а в случае победы эта сумма удвоится. Рискуют организаторы не сильно – за последнее время успехи ведущих шахматистов в борьбе с программами невелики. Началось победное шествие искусственного интеллекта со скандального матча 1997 года, в котором Гарри Каспаров проиграл со счетом 2,5:3,5 компьютеру Deep Blue, после чего обвинил команду разработчиков во вмешательстве в работу машины.

В 2003 году состоялось целых два матча Каспарова с программами – против Deep Junior и Deep Fritz, но оба завершились вничью – реванша так и не последовало. Дальше было только хуже.

В октябре 2004 года на матче "Люди против компьютеров" команда последних – Fritz, Hydra и Junior – нанесла болезненное поражение не самым слабым гроссмейстерам – Карякину, Пономареву и Топалову – со счетом 6:3, причем в девяти партиях людям удалось одержать лишь одну победу (Junior пал жертвой Сергея Карякина). Наконец, в июне 2005 года Hydra учинила подлинный разгром Майклу Адамсу – 5,5:0,5!

Год назад, 23 ноября, в испанском городе Бильбао с неутешительным для представителей человечества результатом завершился второй в истории шахмат турнир между сборными командами людей и компьютеров. Общий счет противостояния, проходившего в четыре тура, - 8:4 не в пользу людей. Три чемпиона мира по версии Международной шахматной федерации (ФИДЕ) состязались с компьютерными программами Fritz, Junior и Hydra. Россиянин Александр Халифман (чемпион 1999 года), украинец Руслан Пономарев (2003) и узбек Рустам Касымджанов (2004) на троих в 12 сыгранных поединках добыли всего одну победу при пяти поражениях и шести ничьих.

У самого Крамника также был опыт встречи с компьютером – в 2002 году в Бахрейне он сыграл со своим нынешним соперником Deep Fritz, точнее с его седьмой версией. Матч состоял из восьми партий. После первой половины Крамник вел в счете 3:1, однако в итоге все вновь свелось к ничьей 4:4. В шестой партии того матча чемпион мира пошел на вариант с жертвой коня, то есть решил посостязаться с машиной в чистом счете, что, разумеется, закончилось в пользу Deep Fritz.

Создателями программного пакета для Deep Fritz являются программисты компании Chessbase голландец Франц Морш и немец Матиас Файст, которые в 1991 году впервые выпустили программу Fritz 1. В 1993 году она приняла участие в турнире по быстрым шахматам среди людей и заняла там первое место, обыграв по ходу дела самого Каспарова. В 1995 году Fritz победил на чемпионате мира среди программ, победив суперкомпьютер Deep Blue. Видимо, уже тогда у создателей программы зародилась мечта о приставке Deep – началось все в свое время с программы Deep Thought ("Глубокая мысль"), продолжилось "темно-синей" Deep Blue, после чего слово стало нарицательным, породив такие малоосмысленные сочетания, как "Глубокий Фриц" или "Глубокий юниор".

В отличие от поверженной в 1995 году Deep Blue, представлявшей собой специально созданную машину, "Фриц" всегда работал на обычном "железе". В частности, версия, которой предстоит "скрестить шпаги" с Крамником, работает на четырехпроцессорных машинах с процессором Intel с тактовой частотой 500 мегагерц и просчитывает до миллиона позиций в секунду.

Никаких экспериментов, подобных тем, что были в матче Гарри Каспарова с X3D-версией Fritz в Нью-Йорке в 2003 году, когда 13-й чемпион мира играл в стереоскопических очках на виртуальной трехмерной доске, Крамник над собой проводить не будет. Напротив Владимира Крамника за шахматной доской будет сидеть не классического вида металлический робот, а обычный человек – оператор ЭВМ, который будет выполнять ходы, подсказанные ему машиной.

Правилами предусмотрено, что дебютная библиотека компьютера не должна меняться в течение матча, за исключением возможности расширить перед каждой следующей партией на десять полуходов встретившийся в предыдущей партии вариант, а также объявить какое-либо из уже имеющихся в библиотеке продолжений приоритетным для программы.

В тот момент, когда компьютер будет играть "по книге", Крамнику на специальном мониторе будет виден процесс выбора машины и статистика достижений белых и черных в том или ином возможном варианте, и только когда Fritz начнет считать самостоятельно, этот монитор будет выключен. После игры компьютеру будет предложено "повторить" дебютный вариант, и если произойдут отклонения от хода игры, которые команда программистов не сможет удовлетворительно объяснить арбитру, последний может засчитать машине поражение в партии.

Матч будет состоять из шести партий (предыдущий поединок Крамника с Fritz в 2002 году в Бахрейне состоял из восьми, а Каспарова с Fritz в 2003 году в Нью-Йорке – из четырех), которые будут играться с перерывом в один день. Победителем будет объявлен тот, кто первым наберет более трех очков. Первая партия пройдет 25 ноября, вторая – 27 ноября, третья - 29 ноября, четвертая – 1 декабря, пятая и шестая, если они понадобятся – 3 и 5 декабря соответственно.

Владимир Крамник оценивает свои шансы осторожно. "Крайне трудно играть против такого счетного монстра, ведь с начала партии ты ходишь по узкой тропинке, где малейшая невнимательность приведет к поражению", - отметил чемпион мира. При этом Крамник считается многими экспертами одним из наиболее "неудобных" соперников для компьютера, так как его стиль игры, основанный на недоступном машинам понимании стратегических нюансов, очень хорошо подходит для борьбы с "бездушными железяками".

Компьютеры компенсируют отсутствие понимания простым расчетом огромного количества позиций, так что нам остается только заинтересованно следить, выйдет ли Владимир Крамник победителем из этого, как он сам выразился, "научного эксперимента", или еще ближе к истине окажутся слова голландского гроссмейстера Яна Доннера, который на вопрос "с помощью чего можно победить компьютер?" ответил: "С помощью кувалды".

Другого мнения придерживается тринадцатый чемпион мира Гарри Каспаров. Еще в конце 2003 года в интервью "Коммерсанту" он отверг возможность того, что в ближайшее время игра в шахматы человек - компьютер потеряет всякий смысл из-за преимущества машины.

"В Америке после моего матча с X3D Fritz увидели: борьба человека с машиной только началась! Ясно, что на сей раз ее спасла только "плавающая" доска – экстремальные условия, в которых находился человек. Посмотрите общий итог десяти моих партий с компьютером, сыгранных в нынешнем году. Из десяти партий машина "стояла" лучше в одной. А я играл, между прочим, с двумя лучшими программами, - отметил Каспаров. Во многих партиях имел большой перевес. И не победил во встречах именно из-за грубых ошибок. Принципиальное значение этих матчей следует сформулировать так: все пока решают очевидные ошибки человека. Ни о каком перевесе машины говорить нельзя. Наоборот, значительный игровой перевес в этих двух моих матчах, да и в матче Владимира Крамника с Deep Fritz в 2002 году, был на стороне человека".

По словам Каспарова, после его поражения от Deep Blue в 1887 году возник миф о том, что с компьютером играть бесполезно, но на самом деле это далеко не так. "Идея о том, что противоборство завершилось победой машины, ушла из общественного сознания. Идут реальные матчи, в которых преимущество на стороне людей. Нет уже демонизации компьютеров. Мы обнаруживаем, что машина не то что уязвима, она сильно уязвима. Главное – понять алгоритм ее мышления, и тогда ей горе. В любом случае ясно, что такие матчи необходимы", - сказал гроссмейстер.

По материалам Lenta.ru , Kommersant.ru , NEWSru .

Официальный сайт Владимира Крамника www.kramnik.com/

05.12.2006:: МАТЧ

Незадолго до начала матча Владимир Крамник сообщил, что нынешний компьютер вдвое мощнее и гораздо сильнее, чем тот, с которым ему довелось играть в Бахрейне. На вопрос, в какую силу он играет, если пользоваться человеческими мерками, Крамник ответил, что выше рейтинга "2800" - это точно, но играет ли на уровень "2900" или "3200", он пока не знает: это может показать только матч.

До этого Крамник изучал программу непрерывно в течение двух недель. И даже заставлял играть с предыдущей версией, чтобы убедиться, что новая сильней на голову. За две недели работы чемпион среди людей узнал все или почти все о своем силиконовом партнере.

Первая партия матча закончилась вничью.

Во второй партии на 35-м ходу Владимир Крамник "зевнул" мат в один ход и счет стал 1,5:0,5 в пользу Deep Fritz.

Александр Рошаль поделился любопытной подробностью второй партии матча: "Оператор Маттиас Файст, который за столиком делает ходы за машину, - типичный немец, немногословен, но кое-что удалось из него вытянуть. Машина после каждого хода выдает систему оценок. До 33-го хода программа отдавала предпочтение сопернику с коэффициентом 0,5-0,6. Файст признался, что после 30-го хода преимущество Крамника машина оценивала в 0,7".

Говорят, после ошибочного хода в Боннском музее изобразительных искусств, где проходил матч, в зрительном зале раздался протяжный стон.

У Крамника спросили после игры, чем он может объяснить свой нелепый промах. Он развел руками...

Третья, четвертая и пятая партии завершились вничью. В шестой - Deep Fritz снова выиграл.

Таким образом, матч закончился со счетом 4:2 в пользу искусственного интеллекта.

05.12.2006:: ВМЕСТО ЭПИЛОГА

Фредерик Фридель является владельцем новой версии программы "Фриц" и самой известной у квалифицированных шахматистов информационной системы Chess Base. Во время банкета перед открытием матча он ответил на несколько вопросов.

Вы кормите большинство шахматных профессионалов, снабжая их базой данных, и за счет этого кормитесь сами. Но, с другой стороны, вы один из тех, кто медленно, но верно убивает шахматы. То есть, вы пилите сук, на котором сидите?

Это не так. Мы не убиваем шахматы. Мы меняем шахматы. Мы даем им другую жизнь. Например, какой-то вариант нравится шахматисту, но он боится его применять. Он должен две недели его анализировать. А сейчас с помощью "Фрица" вы можете это сделать за два часа. Посмотрите на игроков, которые ничего, кроме "Фрица", не знают. Например, я назову Магнуса Карлсена. У него абсолютно новый стиль. Он ничего не боится! И многие другие тоже, потому что они анализируют и говорят: "О"кей, здесь я могу играть!" Предположим, теория, которая существовала сто лет, говорит: эту пешку брать нельзя, там у черных плохо. Но "Фриц" говорит: "О"кей! Покажи мне, как ты можешь выиграть у меня, если я заберу твою пешку". И вдруг обнаруживается, что сто лет до этого шахматисты могли выиграть, отдавая эту пешку, а сейчас они выиграть не могут у "Фрица".

- То есть вы не убиваете шахматы, а даете им другую жизнь…

Более интересную, более смелую.

По материалам

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры.

Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г.


Суперкомпьютер К в 2011 г. был самым быстрым компьютером в мире. Его мощность около 10,51 петафлопс, т. е. примерно 10 510 триллионов операций в секунду. Технологии развиваются стремительно, поэтому сейчас К уже на четвёртом месте, на первом месте ― Tianhe-2 (33,86 петафлопс, 33 860 триллионов операций в секунду). Таким образом, за три года нам удалось утроить вычислительную мощность самого продвинутого компьютера.

Чтобы сделать эти цифры понятнее, iPhone 5п производит примерно 0,0000768 петафлопс. Итого, самый быстрый в мире компьютер примерно в 440 000 быстрее, чем графика iPhone 5, но медленнее, чем человеческий мозг.

В исследовании Мартина Хильберта из школы коммуникации Анненберга при Университете Южной Калифорнии, опубликованном в журнале Science в 2011 г., подсчитана способность мира обрабатывать информацию. Хильберт сформулировал её следующим образом: «Люди всего мира могут осуществить 6,4*1018 операций в секунду на обычных компьютерах образца 2007 г., что сравнимо с максимальным количеством нервных импульсов, возникающих в одном человеческом мозге за секунду».

Мозг дёшево обходится: он достаётся бесплатно

За исключением редких врождённых патологий мы все рождаемся с мозгом. Чтобы построить Tianhe-2, потребовалось $390 миллионов, сообщает «Форбс». При интенсивной работе он потребляет свыше 17,6 мегаватт энергии, площадь компьютерного комплекса занимает 720 кв. метров. Другие суперкомпьютеры более экономичны и потребляют около 8 мегаватт.

Для сравнения: 1 мегаватт равен 1 миллиону ватт. 100-ваттная лампочка при включении берёт 100 ватт. В итоге самый быстрый компьютер потребляет столько же энергии, сколько 176 000 лампочек.

Д-р Джефф Лайтон, технолог Dell корпорации по производству компьютеров, пишет в блоге: «Эти системы очень громоздкие, дорогие и энергозатратные».

Конечно, мозгу тоже требуется энергия. Он получает её из еды, для производства которой в современной сельскохозяйственной системе требуется топливо.

Компьютеры, которые мы используем в повседневной жизни, полезны. Но некоторые эксперты сомневаются в полезности суперкомпьютеров.

Газета South China Morning Post опубликовала статью о китайском суперкомпьютере Tianhe-2: «В отличие от персональных компьютеров, которые могут выполнять самые разные задачи -- от обработки текстов до игр и просмотра вэб-страниц, суперкомпьютеры построены для специфических задач. Для изучения их полной вычислительной возможности учёные потратили месяцы, если не годы, для написания и переписывания кодов, чтобы обучить машину эффективно выполнять свою работу».

Старший научный сотрудник из Пекинского компьютерного центра, пожелавший остаться анонимным, сказал South China Morning Post: «Пузырь суперкомпьютеров хуже, чем пузырь рынка недвижимости. Здание простоит десятилетия после того, как его построили, а компьютер, вне зависимости от того, настолько он быстрый по сегодняшним меркам, превратится в хлам уже через пять лет».

Что быстрее: компьютерный модем или человеческий мозг?

Многие учёные пытались измерить скорость обработки информации человеческим мозгом. Цифры, которые они называют, различаются и зависят от использованного подхода. Сравнение скорости модема и «скорости» работы мозга едва ли можно отнести к разряду точных наук.

Во-первых, нужно рассмотреть, сколько битов в секунду может обработать ваш мозг, затем посмотреть, сколько битов в секунду в среднем обрабатывает современный компьютер. Говоря иными словами, надо сравнить, сколько времени компьютеру требуется для загрузки изображения из Интернета, и сколько времени вам нужно, чтобы проанализировать то, что вы видите перед глазами.

Д-р Тор Норретрандерс, профессор философии из Бизнес-школы Копенгагена, написал книгу под названием «Иллюзия пользователя: сокращаем объём сознания», в которой он утверждает, что сознание обрабатывает примерно 40 бит/с, а подсознание — 11 миллионов бит/с.

Австрийский физик-теоретик Герберт В. Франке утверждал, что человеческий разум может осознанно усваивать 16 бит/с и осознанно удерживать в уме 160 бит/с. Он отмечает, что по этой причине ум может упростить любую ситуацию до 160 бит/с.

Фермин Москозо дель Прадо Мартин, когнитивный психолог из Университета Прованса во Франции, определил, что мозг обрабатывает примерно 60 бит/с. В своей статье в журнале Technology Review он сказал, что не уверен насчёт верхнего предела. То есть он не может утверждать, что мозг неспособен обработать больше 60 бит/с.

А теперь посмотрим, насколько быстро работает ваш компьютер дома.

Один мегабит в секунду равен 1 миллиону бит в секунду. Домашние модемы могут работать со скоростью от 50 мегабит в секунду до нескольких сотен мегабит в секунду. Это в миллион раз быстрее, чем ваше сознание, и, по крайней мере, в пять раз быстрее, чем ваше подсознание. То есть в этом отношении компьютеры однозначно превосходят мозг. Разумеется, эти цифры неточные, потому что с человеческим подсознанием многое до конца неясно.

Однако, хотя люди сравнительно медленно воспринимают информацию, то, как они умеют её обрабатывать, впечатляет.

Мы учимся и мы изобретаем

Учёные работают над созданием компьютеров, которые бы обладали творческими способностями. Но в настоящее время самый продвинутый искусственный интеллект в этом отношении уступает даже мозгу людей, живших тысячи лет назад.

Автор и инженер-электромеханик Райан Дьюб в статье для сайта MakeUseOf.com комментирует высказывание писателя Гэри Маркуса: «Фундаментальное различие между компьютерами и человеческим разумом ― это организация памяти».

Дьюб писал: «Чтобы найти информацию, компьютер использует расположения виртуальной памяти. В свою очередь человеческий мозг помнит, где находится информация благодаря намёкам. Они сами по себе являются единицей информации или памяти, связанной с информацией, которую надо найти.

«Это означает, что человеческий разум в состоянии связать между собой практически безграничное количество концепций самыми разными способами, а затем при получении новой информации убрать или восстановить эти связи. Эта особенность позволяет людям выйти за пределы уже изученной информации и создавать новые изобретения и искусство, что является отличительной особенностью человеческой расы».

Мозг мало изучен, и его преимущества до конца не раскрыты

National Geographic иллюстрирует, насколько сложно создать точную модель человеческого мозга. В февральском номере журнала в статье «Новая наука мозга» рассказывается, как учёные создали трёхмерную модель части мозга мыши размером с крупинку соли. Чтобы детально отобразить этот крошечный отдел, они использовали электронный микроскоп и разделили его на 200 секций, каждая толщиной в человеческий волос.

«Чтобы отобразить человеческий мозг схожим образом, потребовалось бы количество данных, превосходящее все тексты во всех библиотеках мира», ―пишет National Geographic.

В 2005 г. исследователи из Калифорнийского университета и Калифорнийского технологического института обнаружили, что лишь некоторые из 100 миллиардов нейронов в мозгу используются для хранения информации о конкретном человеке, месте или концепции. Например, они обнаружили, что когда людям показали фото актрисы Дженнифер Энистон, в мозгу реагировал один конкретный нейрон. А на фото актрисы Хэлли Берри реагировал уже другой нейрон.

ЧЕЛОВЕК И КОМПЬЮТЕР ЧЕМ МЫ ОПАСНЫ ДРУГ ДЛЯ ДРУГА ЧЕМ ОПАСЕН ДЛЯ НАС КОМПЬЮТЕР Компьютер - высокотехнологичное технически хорошо продуманное устройство, но вместе с тем очень опасное. Иногда опасность реальна, а иногда, он незаметно воздействует на Ваше здоровье и психику.


ВОЗДЕЙСТВИЕ НА ЗРЕНИЕ В связи с применением компьютеров в последнее время офтальмологи стали выявлять компьютерный зрительный синдром? (Computer vision syndrome) который характеризуется следующими жалобами: снижение остроты зрения, двоение предметов, быстрое утомление при чтении, жжение в глазах, чувство «песка», боли в области глазниц и лба, покраснение глазных яблок. Не забывайте - глазам тоже необходим отдых и разминка!!! Разминка для мышц аккомодации (наведения на резкость хрусталика) следующая: встать перед окном, из которого видна даль, и поочередно фокусировать взгляд то на раме, то на горизонте. Выбор помещения Помещение должно быть просторным, хорошо проветриваемым и в меру светлым. Яркий солнечный свет порождает блики на мониторе, поэтому лучше предусмотреть жалюзи. Недопустимо в темной комнате освещать только рабочее пространство. Стол следует располагать так, чтобы солнечный свет из окна и свет от лампы не падали на экран монитора.


ВОЗДЕЙСТВИЕ НА ОСАНКУ. Неправильная организация рабочего места может привести к быстрому утомлению, искривлению позвоночника, защемлению нервных окончаний (что явится причиной сильных болей в разных местах – от ног до головы) Профилактика: правильная организация рабочего места и времени, гимнастика.


АРТРИТ. БОЛЕЗНИ СУСТАВОВ Длительно повторяющиеся однообразные движения Наиболее известен в среде пользователей РС синдром запястных сухожилий, связанный с вводом информации посредством мыши и клавиатуры. При работе с мышкой и клавиатурой более всего задействованы - указательный и средний пальцы, мышцы запястья и предплечья, что может вызвать болезнь суставов. Очень полезно поиграть в «Мы писали, мы писали …». Можно просто сжимать и разжимать запястья, выворачивая их в «замке» наружу. Профилактика: правильная организация рабочего места и времени, гимнастика, распределение нагрузки на все пальцы (десятипальцевый - слепой метод печати). Правильная посадка Гимнастика для рук


ДЛИТЕЛЬНАЯ ГИПОДИНАМИЯ Гиподинамия – ограниченная двигательная подвижность. Ведет к нарушению функций организма (опорно- двигательного аппарата, кровообращения, дыхания, пищеварения) Эта проблема не связана непосредственно с компьютером. Гиподинамия грозит всем, чью работу можно назвать «сидячей». Профилактика: больше двигайтесь, чаще устраивайте перерывы. Каждые 1-1,5 часа прерывайтесь на 5-10-минут. Во время перерыва, в зависимости от нахождения рабочего места, можете выйти на улицу, поднимитесь по лестнице на другой этаж, сделайте несколько наклонов вперед, сомкните руки на затылке и одновременно, руками тяните голову вперед, а головой, наоборот, пытайтесь откинуться назад. Чаще меняйте позу, Позволяйте себе всласть «потянуться», Не забывайте менять положение ног под столом, не ленитесь периодически вставать и прогуливаться


Нервные расстройства Работа за компьютером связанна с постоянным напряжением и раздражением, источником которого могут быть различные ситуации. Например: зависание компьютера, потеря информации, вирусы, медленная работа компьютера. Профилактика: Постарайтесь сделать так, что бы при работе компьютер давал как можно меньше сбоев и раздражал вас. Например: структурируйте информацию для того, что бы её было легко найти, делайте резервные копии, проверяйте на вирусы, почаще чистите мышку что бы не злил непослушный курсор, не пользуйтесь некачественным доступом в Internet. Добивайтесь что бы работа за компьютером была комфортной и не вызывала раздражения.


Помимо такого влияния компьютера на психику в последнее время получило распространение новое явление, называемое Internet-зависимостью и игровая зависимость Это уже вполне осязаемое и массовое явление изучение которого показало следующее: эта зависимость так же пагубна, как алкоголизм или наркомания, и приводит к глубоким изменениям личности - самоизоляции, неуравновешенности психики, патологической забывчивости и неопрятности, равнодушию к близким. Человек в виртуальных путешествиях в Internet или компьютерных играх забывает о времени, ест перед монитором, а не за столом, а на обращение к нему практически не реагирует. Заболевший испытывает непреодолимое желание, как можно дольше находиться в виртуальной реальности, забывая обо всем. Компьютерные игры и Интернет из потребности разрядиться, расслабиться, они иногда постепенно перерастают в психологическую (с явными признаками наркотической - трясутся руки, бегают глаза...) зависимость. Ге́ймер - человек, страдающий патологической тягой к компьютерным играм. Профилактика: организовать рабочее время, мотивированно ограничивать количество игр, развивать чувство самоконтроля. К чему приводит ненормированное общение с компьютером: Internet-зависимостью и игровая зависимость


Механические повреждения Блоков компьютера - это царапины, вмятины, трещины. Механические повреждения клавиатуры. Стираются надписи на клавишах (маникюр, кольца, кремы...), от сильного удара клавиши " залипают " (в особенности пробел и enter). Механические повреждения проводов. Механическое повреждение тонкого защитного слоя экрана. Верх неприличия касаться поверхности экрана пальцем, указкой, ручкой, карандашом... Не желательно протирать экран грубой тканью. ЧЕМ ОПАСНЫ МЫ ДЛЯ КОМПЬЮТЕРА Внутренние механические повреждения, которые могут возникнуть от удара или попадания постороннего предмета вовнутрь. Профилактика: правильная организация рабочего места, категорически запрещается переносить, передвигать блоки компьютера во включенном состоянии. Пыль, загрязнения, влага. Токопроводящая пыль, загрязнения, влага могут вывести из строя блоки компьютера. Загрязнение монитора ручкой, карандашом, пальцами, повреждение защитной поверхности монитора. Профилактика: организовать рабочее место, регулярное техническое обслуживание, не располагать цветы в непосредственной близости с компьютером (над компьютером), пищу, мелкие канцелярские принадлежности. Крошки, кофе, чай, скрепки... могут попасть в компьютерные блоки и вывести их из строя.

Первую ЭВМ создали в 1942 году. Тогда никто не предполагал, что за 75 лет компьютеры станут неотъемлемой частью практически каждого дома, а их вычислительная мощность будет в десятки тысяч раз выше. Из-за этого многие опасаются, что со временем машины вытеснят людей. Так ли это? Давайте обсудим тему - компьютер и человек: кто сильнее и к чему это все приведет.

Компьютер и человеческий мозг

Когда противопоставляют мозг и компьютер, сравнивают вычислительные возможности, способность к многозадачности и анализу. Именно это и подразумевается в вопросе, кто сильнее.

Первые машины едва ли могли сравниться с современным калькулятором, а о сложных вычислениях не было и речи. Постепенно «железо» улучшалось и заговорили о том, что компьютер скоро победит человека в шахматах.

Без улыбки это предположение встречали редко. Максимум, что могла машина того времени, - это обыграть новичка, который не просчитывает дальше одного хода.

Однако с 1997 года в комбинаторике компьютерам нет равных. Программа Deep Blue от IBM, которая просчитывала до 200 миллионов позиций в секунду, обыграла Гарри Каспарова со счетом: 2 победы, 3 ничьих и 1 поражение.

Также компьютер непобедим в скрэббл (игра в слова), шашках, реверси, нардах. Машина быстрее человека собирает кубик Рубика, тратя на это не более 20 ходов и 1,047 секунды. Для сравнения: лучший результат человека - 4,904 секунды.

Означает ли, что компьютер превосходит человеческий мозг? Нет. Он пока далек от его возможностей, но постепенно отставание сокращается. Так в ходе проведенного исследования заключили ученые из Афинского национального университета.

Им удалось измерить вычислительные возможности мозга с помощью магнитно-резонансной томографии. Задача эксперимента заключалась в том, чтобы определить количество отдельных процессов мозга во время выполнения простых задач.

Испытуемым на экране показывали куб зеленого или красного цвета. При появлении первого нужно было указать на него пальцем левой руки, а на второй - правой. Оказалось, что при выполнении этого действия в мозгу одновременно активно работали пятьдесят участков мозга, отвечающие за отдельные задачи.

Интересно, что в следующем испытании людей попросили распознать показываемые предметы и причислить к определенной категории. Эксперимент показал меньшую активность мозга, чем предыдущий. Пятьдесят отдельных задач - это далеко не максимальный результат, однако он значительно превосходит возможности современных компьютеров.

Поэтому можно с уверенностью сказать: потенциал мозга человека значительно выше компьютерного. По крайней мере пока.

Компьютер и человек: кто кому служит

Пусть мы пока еще умнее, но факт остается фактом: со временем машины превзойдут человека во всех сферах деятельности. Это касается не только монотонных операций, но и творчества, искусства, логики.

Через сотню лет, а может быть, и раньше компьютеры смогут выполнять любую работу, причем намного быстрее и качественнее. А с развитием нейронных сетей программы заберут хлеб даже у своих создателей - программистов. Выходит, что компьютер сможет создавать себе подобных.

Отсюда возникает резонный вопрос: что останется людям? Наем сотрудников станет бессмысленным, ведь машина все сделает лучше и быстрее. Она не спит, не ест, не устает, не жалуется на низкую зарплату.

Человечеству останется только желать. Чтобы мы ни захотели, компьютеры выполнят это. Получается, машины служат создателю? Да, но только при идеальных обстоятельствах. На практике может сложиться иначе.

В бытовой сфере уже сейчас видно, что планшеты и смартфоны практически никак не помогают людям решать задачи. В основном их используют для развлечения и досуга, который не учит ничему новому. Какое в этом развитие? Только зомбирование и деградация.

На примере производства также просматривается тенденция превращения человека в придаток компьютера. Машины сами по себе не создают добавочной стоимости, к которой стремится любое предприятие. Поэтому работодатели вынуждены нанимать людей. Однако компьютерные системы увеличивают темп работы, а человек должен под него подстраиваться. По сути, это порабощение.

Будет ли восстание машин? Фильм «Терминатор» в момент выхода воспринимался как сугубо фантастическая лента. Однако из-за стремительного развития IT-технологий сегодня эту картину считают едва ли не пророческой. Имеют ли основания подобные страхи?

Нет. Этого не произойдет, поскольку желание власти - это чисто инстинктивное проявление, присущее только живым организмам. В принятии решений машина руководствуется логикой и заданным алгоритмом, которые никоим образом не приведут ее к идее истребления человечества, ведь это бессмысленно.

Единственный «инстинкт» компьютера - решение задач, заданных людьми. Робот никогда не навредит человеку, если в него не заложить необходимую программу. Но даже в этом случае убивает не машина, а тот, кто приказал ей это сделать. Согласитесь: пистолет самостоятельно не спускает курок.

Существует ли опасность полной победы? Представим, что мы поставили компьютеры на службу человечеству и полностью избавились от необходимости работать.

«Что в этом плохого?» - спросите вы. Это несет угрозу цивилизации. Постепенно люди выродятся. Машины, как и прежде, будут поддерживать нас, но деградация станет усиливаться с каждым поколением.

Если не нужно работать, то и нет нужды узнавать что-то новое и развиваться. Какой смысл, ведь машина делает все эффективнее. Выходит, что наша полная победа - это наше поражение.

Как же быть? Есть два пути решения - остановить прогресс, что приведет к тому же результату, или стать с компьютерами единым целым. Звучит фантастично и пугающе, но это единственный выход.

Стоит заметить, что это совсем не означает, что человек будет похож на персонажей фильма «Люси». Модификации могут быть как стационарными, так и удаленными.

В теории мы можем вживить в человеческий мозг передатчики и приемники сигналов, которые будут обрабатываться на сверхмощных серверах. Таким образом люди смогут общаться, не издавая ни звука, загружать любую информацию прямо в сознание.

Никто не будет умнее или глупее - компьютер уровняет всех. Развитие пойдет семимильными шагами и вряд ли когда-нибудь остановится. Подобная система позволит подключать к мозгу сразу несколько одновременно управляемых тел в виде роботов или андроидов.

Да, скорее всего, подобная перспектива многих пугает, но давайте разберем один пример. Сегодня мы общаемся по телефону, смотрим телевизор и видеоролики, читаем книги. Но, что если мы уберем посредников: смартфоны, мониторы, различные носители информации - и будем получать и передавать данные напрямую, включая зрительные образы? Что изменится? Перестанем ли мы быть от этого людьми?

Все познается в сравнении. Для древних людей мы - сверхсущества, которые летают, как птицы, и имеют доступ к практически любой известной информации. Тот же страх возникает и у нас при мыслях о будущем развитии человечества.

На данный момент компьютер не сильнее человека, но обязательно станет таковым. Однако это не важно, главное - как на это реагировать. Тормозить прогресс либо поставить умные машины на службу? А может, компьютер - часть будущего человека?

Это сложные вопросы, так как затрагивают многие аспекты жизни: философию, религию, мораль. Пока это только фантазии, но, кто знает, полет тоже когда-то был невозможной мечтой. А как вы считаете, человек с механизированным протезом - киборг?

Шахматная мозаика

Выпуск №2. (выпуск №1)

С юных лет автора статьи очень интересовал вопрос разработки шахматной программы, которая могла бы на равных противостоять человеку. Ведь есть же в эндшпиле точное правило квадрата, по которому можно определить, является пешка проходной или нет!

Последним толчком, который побудил к исследованиям в данной области, стало знакомство с результатами работы электронно-вычислительной машины Томпсона, которая с легкостью справлялась с теорией соответствующих полей.

Сложный в анализе эндшпиль был представлен в виде цифр, нанесенных на шахматную доску. Каждая цифра означала число ходов, за которое можно достигнуть выигрыша. Так, при ходе короля на одну клетку выигрыш достигался в 15 ходов, а при ходе на соседнюю клетку - уже в 28 ходов!

Автору статьи показалось, что таким образом и всю шахматную партию можно разложить по полочкам, проанализировать и создать четкий алгоритм, систему, которая позволит спрогнозировать наперед все развитие партии, а значит и успешно бороться против человеческого интеллекта.

Первыми разработками стали обычные алгоритмы на бумаге с анализом позиции на несколько ходов вперед и определением текущего хода в зависимости от того, насколько изменится материальное соотношение сторон на шахматной доске через несколько ходов. Уже позже были испробованы попытки реализации задачи на компьютере с помощью простых процедурных языков программирования, аппарат которых оказался недостаточным ввиду сложности рассматриваемой задачи.

Оказалось, что просто оценивать материальное соотношение сторон недостаточно - необходимо учитывать еще и факторы позиционной оценки.

Самым эффективным оказалось использование современных объектно—ориентированных языков программирования, которые позволяют исследовать сложные позиции. С ростом быстродействия компьютеров стало понятно, что можно использовать огромную базу дебютов, накопленных человечеством, типичные атаки в середине игры, несложные приемы в концовке шахматной партии, когда на доске остается пять - шесть фигур.

В настоящее время существуют уже готовые базы данных эндшпилей. Также на компьютере можно запрограммировать решение несложной задачи на постановку мата, тактические маневры, приводящие к выигрышу качества или целой фигуры.

Но все же компьютер пока еще не способен к творческому мышлению, авантюре, непредсказуемым комбинациям - всему тому, что присуще человеческому разуму. Даже в наш 21 век практически нельзя научить компьютер реагировать на жертву пешки или фигуры, приводящую в дальнейшем к выигрышу через 15 ходов. Электронно-вычислительная машина попросту «скушает» пешку или коня, так как согласно ее расчетам в данный момент выгодно побить фигуру, а в ближайшие 6-8 ходов (самая распространенная глубина счета) компьютеру не грозит мат или ухудшение материального положения в партии.

Еще одним недостатком является откровенное «подвисание» компьютера в эндшпилях, в которых задействовано большое число фигур. В библиотеке компьютера есть только самые типовые концовки партий типа пешка с королем против пешки или король с двумя пешками против короля. Когда же разыгрывается эндшпиль с большим количеством фигур, то компьютер не в состоянии стратегически рассчитать выгодные позиционные ходы. В таком шахматном окончании необходимо несколько десятков ходов, чтобы плавно нарастить позиционное преимущество, а потом превратить его в материальное.

Эти эндшпили просто не вписываются в строгий математический расчет, простой перебор вариантов. К тому же прекрасно известно, что даже перебор всех возможных позиций с глубиной в 6-10 ходов наперед является приблизительным. Компьютер или программа, играющая в шахматы, анализирует лишь острые варианты, связанные с изменение материального положения, возможной угрозы мата или значительным ухудшением позиции. В полный тупик электронно-вычислительную машину ставят так называемые «тихие» ходы - тактически тонкие маневры фигурами, сила которых проявляется через некоторое время, а не сразу.

Тем не менее, за последние шестнадцать лет компьютеры добились значительных успехов в сражениях против людей.

Первой самой громкой сенсацией стала победа шахматного компьютера с романтическим названием Deep Blue в 1997 году над Гарри Каспаровым со счетом 3.5 на 2.5 очка.

В октябре 2002 года Владимир Крамник сыграл вничью с компьютером «Deep Fritz». Крамник победил во второй и третьей партиях, а компьютер - в пятой и шестой партиях. Первая, четвертая, седьмая и восьмая партии закончились вничью.

С 26 января по 7 февраля 2003 года в Нью-Йорке проходил матч между Гарри Каспаровым и шахматным компьютером «Deep Junior 7». Легендарный гроссмейстер победил в первой партии. Компьютер праздновал успех в третьей партии. Остальные четыре партии закончились мирным исходом. Общий счет встречи - 3:3.

С 11 по 18 ноября 2003 года в Нью-Йорке состоялся матч между Гарри Каспаровым и шахматным компьютером «X3dFritz». Каждый из оппонентов выиграл по одной партии, а две партии закончились вничью.

Самые громкие победы электронно-вычислительных машин произошли в 2004-2006 годах. В 2004 году в двух партиях у чемпиона мира по версии ФИДЕ Руслана Пономарева выиграл шахматный компьютер «Hydra». В 2005 году тот же компьютер «Hydra» в матче из шести партий «разбил» со счетом 5.5 на 0.5 очка Майкла Адамса, занимавшего в то время седьмую строчку мирового рейтинга.

В 2005 году трио компьютеров-чемпионов («Hydra», «Deep Fritz» и «Junior») обыграло в объединенном матче команду из троих сильнейших гроссмейстеров (Руслан Пономарев, Веселин Топалов, и Сергей Карякин) с общим счетом 8.5 на 3.5 очка.

А самой громкой сенсацией стало поражение Владимира Крамника в следующем году от шахматного компьютера «Deep Fritz» со счетом 4:2.

Возможно, у читателей «Русского Базара» возник вполне резонный вопрос: неужели компьютеры в последнее время стали непобедимыми?

Дело в том, что во всех этих победах большую роль сыграл человеческий фактор. Гроссмейстеры допустили ряд грубых зевков, что привело к их поражению.

Еще одним фактором успеха стала возможность изменять базы данных программы по ходу матча. Если бы такой возможности не было, компьютер попросту мог бы быть разгромлен несколько раз одними и те же тактическими приемами.

Чемпионы мира Гарри Каспаров и Владимир Крамник выбирали на поединки правильные тактические схемы. Они выбирали малоизвестные дебюты, разменивались и быстро переходили в фигурный эндшпиль.

Причинами проигранных партий стали серьезные ошибки. Давайте рассмотрим вторую партию матча Гарри Каспарова в Deep Blue в 1997 году.

Компьютер играет белыми фигурами, а чемпион мира - черными.

1. e4 e5 2.Kf3 Kc6 3.Cb5 a6 4.Ca4 Kf6 5.O-O Ce7 6.Лe1 b5 7.Cb3 d6 8.c3 O-O 9.h3 h6 10.d4 Лe8 11.Kbd2 Cf8 12.Kf1 Cd7 13.Kg3 Ka5 14.Cc2 c5 15.b3 Kc6 16.d5 Ke7 17.Ce3 Kg6 18.Фd2 Kh7 19.a4 Kh4 20.Kxh4 Фxh4 21.Фe2 Фd8 22.b4 Фc7 23.Лec1 c4 24.Лa3 Лec8 25.Лca1 Фd8 26.f4 Kf6 27.fe de 28.Фf1 Ke8 29.Фf2 Kd6 30.Cb6 Фe8 31.Л3a2 Ce7 32.Cc5 Cf8 33.Kf5 Cxf5 34.ef f6 35.Cxd6 Cxd6 36.ab ab 37.Ce4 Лxa2 38.Фxa2 Фd7 39.Фa7 Лc7 40.Фb6 Лb7 41.Лa8+ Kf7 42.Фa6 Фc7 43.Фc6 Фb6+ 44.Kf1 Лb8

В этой позиции шахматный компьютер сделал слабый ход 45.Лa6? Гарри Каспаров мог спастись вечным шахом 45. ... Фe3! 46. Ф:d6 Лe8! 47. h4! h5!. Однако гроссмейстер предпочёл сдаться.

Почему компьютер «просмотрел» такой вариант как вечный шах?

С точки зрения электронно-вычислительной машины, она остается с материальным преимуществом, а если избежать вечного шаха, то материальное положение хуже. У компьютера напрочь отсутствует гибкость мышления, которая свойственна живому человеку.

В другой партии Каспаров умело воспользовался «жадностью» компьютерной программы. Пожертвовав пешку, чемпион мира получил выигрышную позицию. Нехватка времени и неточности в атаке позволили компьютеру свести партию вничью.

Даже чемпионам мира свойственно ошибаться, причем очень серьезно. Владимир Крамник при игре с шахматным компьютером «Deep Fritz» в 2006 году «зевнул» мат в один ход. Фактически это предопределило исход всего матча. Если бы эта партия закончилась вничью, то и весь поединок тоже.

Ранее, в 2002 году в первой встрече с программой «Deep Fritz» Крамник фактически «зевнул» коня.

Еще одним проигрышным вариантом для шахматиста будет попытка переиграть компьютер в комбинационной игре.

В том же матче Владимир Крамник решил в одной партии ввязаться в авантюру с жертвой слона за пару пешек. Компьютер просчитал матовую атаку и отбил ее. Шахматные компьютеры блестяще защищаются. Если у человека угроза мата и сильная атака вызывает желание только держать оборону, то для компьютера - это обычная математическая задача.

Грамотно защищаясь, электронно-вычислительная машина ведет свою игру, пытаясь параллельно атаковать. В защитных действиях компьютер практически непобедим.

Стоит признать, что в этих поединках гроссмейстеры изначально были поставлены в неравные условия. Во время игры сотни процессоров и резервные жесткие диски обеспечивали анализ партий за дополнительными досками. В то же время у чемпионов мира не было даже одной доски, где бы можно было сделать анализ.

Алгоритм работы ЭВМ был «заточен» под определенного человека. В то же время гроссмейстер не знал, как играет машина. Периодические перезагрузки и изменения в программу во время матчей говорят о том, что без команды разработчиков ЭВМ бы не справилась.

Шахматный компьютер умеет анализировать миллионы позиций в секунду, а человек за это время даже одну не сможет.

Тем не менее, электронно-вычислительным машинам пока еще очень далеко до человеческого разума. По сути, все проигрыши гроссмейстеров состоялись из-за зевков. Творческое, иррациональное мышление - вот что делает человека намного сильнее машины.

Но этот спор еще не закончен. В ближайшем будущем вновь и вновь предстоят увлекательные битвы человеческого творческого разума против холодного компьютерного расчета.