Применение операции исключительное или. Логические элементы

Так же, как и стандартные Булевы выражения, информация на входах и выходах различных логических элементов или логических схем может быть собрана в единую таблицу – таблицу истинности.

Таблица истинности дает наглядное представление о системе логических функций. В таблице истинности отображаются сигналы на выходах логических элементов при всех возможных комбинациях сигналов на их входах.

В качестве примера, рассмотрим логическую схему с двумя входами и одним выходом. Входные сигналы отметим как «А» и «В», а выход «Q». Есть четыре (2²) возможных комбинаций входных сигналов, которые можно подать на эти два входа («ON — наличие сигнала» и «OFF — отсутствие сигнала»).

Однако, когда речь идет о логических выражениях и, особенно о таблице истинности логических элементов, вместо общего понятия «наличие сигнала» и «отсутствие сигнала» используют битные значения, которые представляют собой логический уровень «1» и логический уровень «0» соответственно.

Тогда четыре возможные комбинации «А» и «В» для 2-входного логического элемента можно представить в следующем виде:

  1. «OFF» — «OFF» или (0, 0)
  2. «OFF» — «ON» или (0, 1)
  3. «ON» — «OFF» или (1, 0)
  4. «ON» — «ON» или (1, 1)

Следовательно, у логической схемы имеющей три входа будет восемь возможных комбинаций (2³) и так далее. Для обеспечения легкого понимания сути таблицы истинности, мы будем изучать ее только на простых логических элементах с числом входов не превышающим двух. Но, несмотря на это, принцип получения логических результатов для многовходных элементов схемы остается таким же.

Практически, таблица истинности состоит из одного столбца для каждой из входных переменных (например, А и В), и один последний столбец для всех возможных результатов логической операции (Q). Следовательно, каждая строка таблицы истинности содержит один из возможных вариантов входных переменных (например, A = 1, B = 0), и результат операции с этими значениям.

Таблица истинности

Элемент «И»

Для логического элемента «И» выход Q будет содержать лог.1, только если на оба входа («А» и «В») будет подан сигнал лог.1

Микросхемы, содержащие логический элемент «И»:

  • К155ЛИ1, аналог SN7408N
  • К155ЛИ5 с открытым коллектором, аналог SN74451N
  • К555ЛИ1, аналог SN74LS08N
  • К555ЛИ2 с открытым коллектором, аналог SN74LS09N

Элемент «ИЛИ»

Выход Q, элемента «ИЛИ», будет иметь лог.1, если на любой из двух входов или же на оба входа сразу подать лог.1


Микросхемы, содержащие логический элемент «ИЛИ»:

  • К155ЛЛ1, аналог SN7432N
  • К155ЛЛ2 с открытым коллектором, аналог SN75453N
  • К555ЛЛ1, аналог SN74LS32N

Элемент «НЕ»

В данном случае выход Q, логического элемента «НЕ», будет иметь сигнал противоположный входному сигналу.

Микросхемы, содержащие логический элемент «НЕ»:

  • К155ЛН1, аналог SN7404N
  • К155ЛН2 с открытым коллектором, аналог SN7405N
  • К155ЛН3, аналог SN7406N
  • К155ЛН5 с открытым коллектором, аналог SN7416N
  • К155ЛН6, аналог SN7466N

Элемент «И-НЕ»

На выходе Q элемента «И-НЕ» будет лог.1 если на обоих входах одновременно отсутствует сигнал лог.1

Микросхемы, содержащие логический элемент «И-НЕ»:

  • К155ЛА3, аналог SN7400N
  • К155ЛА8, аналог SN7401N
  • К155ЛА9 с открытым коллектором, аналог SN7403N
  • К155ЛА11 с открытым коллектором, аналог SN7426N
  • К155ЛА12 с открытым коллектором, аналог SN7437N
  • К155ЛА13 с открытым коллектором, аналог SN7438N
  • К155ЛА18 с открытым коллектором, аналог SN75452N

Элемент «ИЛИ-НЕ»

Только если на оба входа логического элемента «ИЛИ-НЕ» подать лог.0 мы получим на его выходе Q сигнал соответствующий лог.1

Микросхемы, содержащие логический элемент «ИЛИ-НЕ»:

  • К155ЛЕ1, аналог SN7402N
  • К155ЛЕ5, аналог SN7428N
  • К155ЛЕ6, аналог SN74128N

Элемент «Исключающее ИЛИ»

В данном случае выход Q будет содержать лог.1, если на вход элемента «Исключающее ИЛИ» поданы два противоположных друг другу сигнала.

Микросхемы, содержащие логический элемент «Исключающее ИЛИ»:

  • К155ЛП5, аналог SN7486N

Подведем итог, собрав все полученные ранее результаты работы логических элементов в единую таблицу истинности:

В данной статье расскажем что такое логические элементы, рассмотрим самые простые логические элементы.

Любое цифровое устройство — персональный компьютер, или современная система автоматики состоит из цифровых интегральных микросхем (ИМС), которые выполняют определённые сложные функции. Но для выполнения одной сложной функции необходимо выполнить несколько простейших функций. Например, сложение двух двоичных чисел размером в один байт происходит внутри цифровой микросхемы называемой «процессор» и выполняется в несколько этапов большим количеством логических элементов находящихся внутри процессора. Двоичные числа сначала запоминаются в буферной памяти процессора, потом переписываются в специальные «главные» регистры процессора, после выполняется их сложение, запоминание результата в другом регистре, и лишь после результат сложения выводится через буферную память из процессора на другие устройства компьютера.

Процессор состоит из функциональных узлов: интерфейсов ввода-вывода, ячеек памяти – буферных регистров и «аккумуляторов», сумматоров, регистров сдвига и т.д. Эти функциональные узлы состоят из простейших логических элементов, которые, в свою очередь состоят из полупроводниковых транзисторов, диодов и резисторов. При конструировании простых триггерных и других электронных импульсных схем, сложные процессоры не применить, а использовать транзисторные каскады – «прошлый век». Тут и приходят на помощь – логические элементы .

Логические элементы , это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Для того, чтобы разобраться, что такое логические элементы , мы будем рассматривать самые простейшие из них. А потом, наращивая знания, разберёмся и с более сложными цифровыми элементами.

Начнём с того, что единица цифровой информации это «один бит». Он может принимать два логических состояния – логический ноль «0», когда напряжение равно нулю (низкий уровень), и состояние логической единицы «1», когда напряжение равно напряжению питания микросхемы (высокий уровень).

Поскольку простейший логический элемент это электронное устройство, то это означает, что у него есть входы (входные выводы) и выходы (выходные выводы). И входов и выходов может быть один, а может быть и больше.

Для того, чтобы понять принципы работы простейших логических элементов используется «таблица истинности» . Кроме того, для понимания принципов работы логических элементов, входы, в зависимости от их количества обозначают: Х1, Х2, … ХN, а выходы: Y1, Y2, … YN.

Функции, выполняемые простейшими логическими элементами, имеют названия. Как правило, впереди функции ставится цифра, обозначающая количество входов. Простейшие логические элементы всегда имеют лишь один выход.

Рассмотрим простейшие логические элементы

«НЕ» (NOT) – функция отрицания (инверсии сигнала). Потому его чаще называют — «инвертор» . Графически, инверсия обозначается пустым кружочком вокруг вывода элемента (микросхемы). Обычно кружок инверсии ставится у выхода, но в более сложных логических элементах, он может стоять и на входе. Графическое обозначение элемента «НЕ» и его таблица истинности представлены на рисунке слева.

У элемента «НЕ» всегда один вход и один выход. По таблице истинности следует, что при наличии на входе элемента логического нуля, на выходе будет логическая единица. И наоборот, при наличии на входе логической единицы, на выходе будет логический ноль. Цифра «1» внутри прямоугольника обозначает функцию «ИЛИ», её принято рисовать и внутри прямоугольника элемента «НЕ», но это ровным счётом ничего абсолютно не значит.

Обозначение D1.1 означает, что D — цифровой логический элемент, 1 (первая) — номер микросхемы в общей схеме, 1 (вторая) — номер элемента в микросхеме. Точно также расшифровываются и другие логические элементы.

Часто, чтобы отличить цифровые микросхемы от аналоговых микросхем, применяют обозначения из двух букв: DD – цифровая микросхема, DA – аналоговая микросхема. В последующем, мы не будем заострять внимание на это обозначение, а вернёмся лишь тогда, когда это будет необходимым.

Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «НЕ», является интегральная микросхема (ИМС) К155ЛН1, внутри которой имеется шесть элементов «НЕ». Нумерация выводов этой микросхемы показана справа.

«И» (AND) – функция сложения (если на всех входах единица, то на выходе будет единица, в противном случае, если хотя бы на одном входе ноль, то и на выходе всегда будет ноль). В алгебре-логике элемент «И» называют «конъюнктор» . Графическое обозначение элемента «2И» и его таблица истинности представлены слева.

Название элемента «2И» обозначает, что у него два входа, и он выполняет функцию «И» . На схеме внутри прямоугольника микросхемы рисуется значок «&» , что на английском языке означает «AND» (в переводе на русский — И).

По таблице истинности следует, что на выходе элемента «И» будет логическая единица только в одном случае — когда на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то и на выходе будет ноль.

Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ) , выполняющей функцию «2И», является интегральная микросхема (ИМС) К155ЛИ1, внутри которой имеется четыре элемента «2И». Нумерация выводов этой микросхемы показана справа.

Для того, чтобы вам было понятнее что такое «2И», «3И», «4И», и т.д., приведу графическое обозначение и таблицу истинности элемента «3И».

По таблице истинности следует, что на выходе элемента «3И» будет логическая единица только в том случае — когда на всех трёх входах будет логическая единица. Если хотя бы на одном входе будет логический ноль, то и на выходе элемента также будет логический ноль. Самой распространённой микросхемой ТТЛ, выполняющей функцию «3И», является микросхема К555ЛИ3, внутри которой имеется три элемента «3И».

«И-НЕ» (NAND) – функция сложения с отрицанием (если на всех входах единица, то на выходе будет ноль, в противном случае на выходе всегда будет единица). Графическое обозначение элемента «2И-НЕ» и его таблица истинности приведены слева.

По таблице истинности следует, что на выходе элемента «2И-НЕ» будет логический ноль только в том случае, если на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то на выходе будет единица.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2И-НЕ», является ИМС К155ЛА3, а микросхемами КМОП (комплементарный металлооксидный полупроводник) – ИМС К561ЛА7 и К176ЛА7, внутри которых имеется четыре элемента «2И-НЕ». Нумерация выводов этих микросхем показана справа.

Сравнив таблицы истинности элемента «2И-НЕ» и элемента «2И» можно догадаться об эквивалентности схем:

Добавив к элементу «2И» элемент «НЕ» мы получили элемент «2И-НЕ». Так можно собрать схему, если нам необходим элемент «2И-НЕ», а у нас в распоряжении имеются только элементы «2И» и «НЕ».

И наоборот:

Добавив к элементу «2И-НЕ» элемент «НЕ» мы получили элемент «2И». Так можно собрать схему, если нам необходим элемент «2И», а у нас в распоряжении имеются только элементы «2И-НЕ» и «НЕ».

Аналогичным образом, путём соединения входов элемента «2И-НЕ» мы можем получить элемент «НЕ»:

Обратите внимание, что было введено новое в обозначении элементов – дефис, разделяющий правую и левую часть в названии «2И-НЕ». Этот дефис непременный атрибут при инверсии на выходе (функции «НЕ»).

«ИЛИ» (OR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – единица, в противном случае на выходе всегда будет ноль). В алгебре-логике, элемент «ИЛИ» называют «дизъюнктор». Графическое обозначение элемента «2ИЛИ» и его таблица истинности приведены слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ», является ИМС К155ЛЛ1, внутри которой имеется четыре элемента «2ИЛИ». Нумерация выводов этой микросхемы показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать схему, которая будет выполнять функцию «2ИЛИ»:

«ИЛИ-НЕ» (NOR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – ноль, в противном случае на выходе всегда будет единица). Как вы поняли, элемент «ИЛИ-НЕ» выполняет функцию «ИЛИ», а потом инвертирует его функцией «НЕ».

Графическое обозначение элемента «2ИЛИ-НЕ» и его таблица истинности приведена слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ-НЕ», является ИМС К155ЛЕ1, а микросхемами КМОП – К561ЛЕ5 и К176ЛЕ5, внутри которых имеется четыре элемента «2ИЛИ-НЕ». Нумерация выводов этих микросхем показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ-НЕ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «2ИЛИ-НЕ»:

По аналогии с элементом «2И-НЕ», путём соединения входов элемента «2ИЛИ-НЕ» мы можем получить элемент «НЕ»:

«Исключающее ИЛИ» (XOR) — функция неравенства двух входов (если на обоих входах элемента одинаковые сигналы, то на выходе – ноль, в противном случае на выходе всегда будет единица). Операция, которую он выполняет, часто называют «сложение по модулю 2».

Графическое обозначение элемента «Исключающее ИЛИ» и его таблица истинности приведены слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «Исключающее ИЛИ», является ИМС К155ЛП5, а микросхемами КМОП – К561ЛП2 и К176ЛП2, внутри которых имеется четыре элемента «Исключающее ИЛИ». Нумерация выводов этих микросхем показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «Исключающее ИЛИ», но у нас есть в распоряжении только элементы «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «Исключающее ИЛИ» :

В цифровой схемотехнике процессоров главная функция — «Суммирование двоичных чисел», поэтому сложный логический элемент – «Сумматор» является неотъемлемой частью арифметико-логического устройства любого, без исключения процессора. Составной частью сумматора является набор логических элементов, выполняющих функцию «Исключающее ИЛИ с переносом остатка» . Что это такое? В соответствии с наукой «Информатика», результатом сложения двух двоичных чисел, две единицы одного разряда дают ноль, при этом формируется «единица переноса» в следующий старший разряд, который участвует в операции суммирования в старшем разряде. Для этого в схему добавляется ещё один вывод «переноса» — «Р».

Графическое обозначение элемента «Исключающее ИЛИ с переносом» и его таблица истинности представлена слева.

Такая функция сложения одноразрядных чисел в простых устройствах обычно не используется, и как правило, интегрирована в состав одной микросхемы – сумматора, с минимальным количеством разрядов – четыре, для сложения четырехбитных чисел. По причине слабого спроса, промышленность таких логических элементов не выпускает. Поэтому, в случае необходимости, функцию «Исключающее ИЛИ с переносом» можно собрать по следующей схеме из элементов «2И-НЕ» и «2ИЛИ-НЕ», которая активно применяется как внутри простых сумматоров, так и во всех сложных процессорах (в том числе Pentium, Intel-Core, AMD и других, которые появятся в будущем):

Вышеперечисленные логические элементы выполняют статические функции, а на основе них строятся более сложные статические и динамические элементы (устройства): триггеры, регистры, счётчики, шифраторы, дешифраторы, сумматоры, мультиплексоры.

Элементы Исключающее ИЛИ (по-английски - Exclusive-OR) также можно было бы отнести к простейшим элементам, но функция, выполняемая ими, несколько сложнее, чем в случае элемента И или элемента ИЛИ. Все входы элементов Исключающее ИЛИ равноправны, однако ни один из входов не может заблокировать другие входы, установив выходной сигнал в уровень единицы или нуля.

Рис. 4.1. Обозначения элементов Исключающее ИЛИ: зарубежные (слева) и отечественные (справа)

Под функцией Исключающее ИЛИ понимается следующее: единица на выходе появляется тогда, когда только на одном входе присутствует единица. Если единиц на входах две или больше, или если на всех входах нули, то на выходе будет нуль. Таблица истинности двухвходового элемента Исключающее ИЛИ приведена в табл. 4.1. Обозначения, принятые в отечественных и зарубежных схемах, показаны на рис. 4.1. Надпись на отечественном обозначении элемента Исключающее ИЛИ "=1" как раз и обозначает, что выделяется ситуация, когда на входах одна и только одна единица.

Элементов Исключающее ИЛИ в стандартных сериях немного. Отечественные серии предлагают микросхемы ЛП5 (четыре двухвходовых элемента с выходом 2С), ЛЛ3 и ЛП12, отличающиеся от ЛП5 выходом ОК. Слишком уж специфическая функция реализуется этими элементами.

С точки зрения математики, элемент Исключающее ИЛИ выполняет операцию так называемого суммирования по модулю 2. Поэтому эти элементы также называются сумматорами по модулю два. Как уже отмечалось в предыдущей лекции, обозначается суммирование по модулю 2 знаком плюса, заключенного в кружок.

Основное применение элементов Исключающее ИЛИ, прямо следующее из таблицы истинности, состоит в сравнении двух входных сигналов. В случае, когда на входы приходят две единицы или два нуля (сигналы совпадают), на выходе формируется нуль (см. табл. 4.1). Обычно при таком применении на один вход элемента подается постоянный уровень, с которым сравнивается изменяющийся во времени сигнал, приходящий на другой вход. Но значительно чаще для сравнения сигналов и кодов применяются специальные микросхемы компараторов кодов, которые будут рассмотрены в следующей лекции.

В качестве сумматора по модулю 2 элемент Исключающее ИЛИ используется также в параллельных и последовательных делителях по модулю 2, служащих для вычисления циклических контрольных сумм. Но подробно эти схемы будут рассмотрены в лекциях 14,15.

Важное применение элементов Исключающее ИЛИ - это управляемый инвертор (рис. 4.2). В этом случае один из входов элемента используется в качестве управляющего, а на другой вход элемента поступает информационный сигнал. Если на управляющем входе единица, то входной сигнал инвертируется, если же нуль - не инвертируется. Чаще всего управляющий сигнал задается постоянным уровнем, определяя режим работы элемента, а информационный сигнал является импульсным. То есть элемент Исключающее ИЛИ может изменять полярность входного сигнала или фронта, а может и не изменять в зависимости от управляющего сигнала.

Рис. 4.2. Элемент Исключающее ИЛИ как управляемый инвертор

В случае, когда имеется два сигнала одинаковой полярности (положительные или отрицательные), и при этом их одновременный приход исключается, элемент Исключающее ИЛИ может быть использован для смешивания этих сигналов (рис. 4.3). При любой полярности входных сигналов выходные сигналы элемента будут положительными. При положительных входных сигналах элемент Исключающее ИЛИ будет работать как элемент 2ИЛИ, а при отрицательных он будет заменять элемент 2И-НЕ. Такие замены могут быть полезны в тех случаях, когда в схеме остаются неиспользованными некоторые элементы Исключающее ИЛИ. Правда, при этом надо учитывать, что задержка распространения сигнала в элементе Исключающее ИЛИ обычно несколько больше (примерно в 1,5 раза), чем задержка в простейших элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Рис. 4.3. Применение элемента Исключающее ИЛИ для смешивания двух неодновременных сигналов

Рис. 4.4. Выделение фронтов входного сигнала с помощью элемента Исключающее ИЛИ

Еще одно важнейшее применение элемента Исключающее ИЛИ - формирование коротких импульсов по любому фронту входного сигнала (рис. 4.4). В данном случае не важно, положительный фронт входного сигнала или отрицательный, на выходе все равно формируется положительный импульс. Входной сигнал задерживается с помощью конденсатора или цепочки элементов, а затем исходный сигнал и его задержанная копия поступают на входы элемента Исключающее ИЛИ. В обеих схемах в качестве элементов задержки используются также двувходовые элементы Исключающее ИЛИ в неинвертирующем включении (на неиспользуемый вход подается нуль). В результате такого преобразования можно говорить об удвоении частоты входного сигнала, так как выходные импульсы следуют вдвое чаще, чем входные.

Поведение

Элементы Исключающее ИЛИ, Исключающее ИЛИ-НЕ, Нечётность и Чётность вычисляют соответствующую функцию от значений на входах и выдают результат на выход.

По умолчанию, неподключенные входы игнорируются - то есть, если входы действительно не имеют ничего подключенного к ним - даже провода. Таким образом, вы можете добавить 5-входовый элемент, но подключить только два входа, и он будет работать как 2-входовый элемент; это избавляет вас от необходимости беспокоиться о настройке количества входов каждый раз при создании элемента. (Если все входы не подключены, то на выходе значение ошибки X .) Некоторые пользователи, однако, предпочитают, чтобы Logisim настаивал, чтобы все входы были подключены, поскольку это соответствует реальным элементам. Вы можете включить это поведение, выбрав меню Проект > Параметры…, перейдя на вкладку Моделирование, и выбрав вариант Ошибка для неопределённых входов для Выход элемента при неопределённости.

Двухвходовая таблица истинности для элементов следующая.

x y Исключающее ИЛИ Исключающее ИЛИ-НЕ Нечётность Чётность
0 0 0 1 0 1
0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 1 0 1

Как вы можете видеть, элементы Нечётность и Исключающее ИЛИ ведут себя одинаково в случае двух входов; аналогично, элементы Чётность и Исключающее ИЛИ-НЕ ведут себя одинаково. Но если входов с определённым значением больше двух, то элемент Исключающее ИЛИ будет давать на выходе 1, когда единица строго на одном входе, тогда как элемент Нечётность даст на выходе 1, когда единица на нечётном количестве входов. Элемент Исключающее ИЛИ-НЕ будет давать на выходе 1, когда входов с единицей строго не один, тогда как элемент Чётность даст 1, когда входов с единицей чётное количество. Элементы Исключающее ИЛИ и Исключающее ИЛИ-НЕ имеют атрибут, названный Многовходовое поведение, который позволяет настроить их на использование поведения элементов Нечётность и Чётность.

Если на каких-либо входах значение ошибки (например, если противоречивые значения поступают на один и тот же провод) или плавающее значение, то на выходе будет значение ошибки.

Многобитные версии каждого элемента будут выполнять свои однобитные преобразования над входами поразрядно.

Примечание: многие специалисты утверждают, что поведение фигурного элемента Исключающее ИЛИ должно соответствовать поведению элемента Нечётность, но по этому вопросу нет согласия. Поведение Logisim по умолчанию для элемента Исключающее ИЛИ основано на стандарте IEEE 91. Это также согласуется с интуитивным пониманием термина Исключающее ИЛИ : официант, спрашивающий, хотите вы гарнир из картофельного пюре, моркови, зеленого горошка, или шинкованной капусты, примет только один выбор, а не три, независимо от того, что вам могут сказать некоторые специалисты. (Должен признать, однако, что я не подвергал это заявление серьезным испытаниям.) Вы можете настроить элементы Исключающее ИЛИ и Исключающее ИЛИ-НЕ на использование одного из вариантов, меняя его атрибут Многовходовое поведение.

Контакты (предполагается, что компонент направлен на восток)

Западный край (входы, разрядность соответствует атрибуту Биты данных)

Входы компонента. Их будет столько, сколько указано в атрибуте Количество входов.

Заметьте, что если вы используете фигурные элементы, то западный край элементов Исключающее ИЛИ и Исключающее ИЛИ-НЕ будет искривлён. Тем не менее, входные контакты расположены вряд. Logisim отрисовывает короткие отрезки чтобы показать это; если вы перекроете отрезок, программа будет без предупреждений предполагать, что вы не хотели перекрыть его. При использовании "Вида для печати", эти отрезки не будут отрисованы, если не подключены к проводам.

Восточный край (выход, разрядность соответствует атрибуту Биты данных)

Выход элемента, значение на котором вычисляется на основании текущих значений на входах, как описано выше.

Атрибуты

Когда компонент выбран, или уже добавлен, клавиши от 0 до 9 меняют его атрибут Количество входов, комбинации от Alt-0 до Alt-9 меняют его атрибут Биты данных, а клавиши со стрелками меняют его атрибут Направление.

Направление Направление компонента (его выхода относительно его входов). Биты данных Разрядность входов и выходов компонента. Размер элемента Определяет, следует отрисовывать широкую или узкую версию компонента. Это не влияет на количество входов, которое определяется атрибутом Количество входов; правда, если количество входов превышает 3 (для узкого компонента) или 5 (для широкого), то элемент будет отрисовываться с "крыльями", чтобы вместить запрошенное количество входов. Количество входов Определяет, сколько контактов на западном крае будет иметь компонент. Многовходовое поведение (только для Исключающее ИЛИ и Исключающее ИЛИ-НЕ) Когда входов три или более, то значение на выходе элементов Исключающее ИЛИ и Исключающее ИЛИ-НЕ будет основано или на том, что 1 строго на одном входе (по умолчанию), или на нечётном количестве входов.

На практике наиболее часто используют двухвходовые элементы «исключающее ИЛИ. На рис. 1 показано условное графическое обозначение элемента без инверсии и его таблица состояний. По простому, суть данного элемента сводится к следующему, сигнал на выходе появляется только в том случае, когда логические уровни на входах не одинаковые.

Схема выделения фронта и среза импульса

В данной схеме три элемента «Исключающий ИЛИ» используются для задержки импульсов. DD1.4 — суммирующий. Выходные импульсы имеют стабильные фронты и срезы. Длительность каждого выходного импульса равна утроенному времени задержки переключения каждого из трех элементов. Временной промежуток между фронтами выходных импульсов равен длительности входного импульса. Так же это устройство удваивает частоту входного сигнала.

Есть еще одно интересное свойство «Исключающее ИЛИ». Если на один из входов подать постоянный «0», то сигнал на выходе элемента будет повторять входной сигнал, а если постоянный «0» поменять на постоянную «1», то выходной сигнал уже будет инверсией входного.

Иногда появляется необходимость получить элемент «исключающее ИЛИ» из отдельных стандартных логических элементов. Примером может служить схема элемента «исключающее ИЛИ» реализованная на четырех элементах 2-И-НЕ. На рисунке 3 показана схема «исключающее ИЛИ» в четырех ее состояниях. Здесь показаны все возможные логические уровни на каждом из используемых логически элементов 2-И-НЕ.

Такие элементы входят в схему . В данной схеме элемент «Исключающий ИЛИ» выполнен на четырех элементах 2-И-НЕ, входящих в один корпус микросхемы К561ЛА7.

Формирователь дискретного сигнала с разностной частотой

Схема формирователя показана на рисунке 4. Здесь логический элемент «исключающее ИЛИ» также реализован на четырех элементах 2-И-НЕ.

На входы 1 и 2 формирователя падают импульсы прямоугольной формы (см. графики 1 и 2), которые различаются частотой следования. Узел на логических элементах DD1.1-DDI.4 перемножает эти сигналы. Выходной импульсный сигнал (график 3) с элемента DD1.4 подается на интегрирующую цепь R3, С1, преобразующую его в сигнал треугольной формы (график 4) с частотой, равной разности частот входных сигналов, а ОУ DA1 преобразует полученный сигнал в меандр (см. график 5). Резистором R1 регулируют длительность положительной и отрицательной полуволн выходного сигнала. Очень интересная схема. Радиоконструктору, есть над чем подумать. Например, сигнал, показанный на третьем графике, является сигналом ШИМ синусоиды.
Конечно диапазон использования элементов «исключающее ИЛИ» намного шире. Я привел здесь на мой взгляд более интересные для радиолюбителей.