Срок службы солнечная батарея для до. Что надо знать про солнечные батареи для дома: их выбор, размещение и использование

Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника - от 5 до 20 лет.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Наиболее богатым опытом эксплуатации обладают кристаллические модули. Их начали устанавливать еще 50-х годах прошлого века, а массовое использование началось в конце 1970-х. Поэтому именно о долговечности таких модулей уже можно делать какие-то выводы.

Расчетный срок службы кристаллических модулей обычно 30 лет. Производители делают ускоренные тесты по эксплуатации модуля для того, чтобы оценить его реальный срок службы. Сами солнечные элементы, используемые в солнечных модулях, имеют практически неограниченный срок службы и показывают отсутствие деградации по прошествии десятков лет эксплуатации. Однако, выработка модулей со временем падает. Это результат 2 основных факторов - постепенное разрушение пленки, используемой для герметизации модуля (обычно используется этиленвинилацетатная пленка - ethylene vinyl acetate; EVA) и разрушение задней поверхности модуля (обычно поливинилфосфатная пленка), а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.

Герметик модуля защищает солнечные элементы и внутренние электрические соединения от воздействия влаги. Так как практически невозможно полностью защитить элементы от влаги, модули на самом деле «дышат», но это крайне трудно заметить. Влага, попавшая внутрь, выводится наружу днем, когда температура модуля возрастает. Солнечный свет постепенно разрушает герметизирующие элементы за счет ультрафиолетового излучения, и они становятся менее эластичными и более податливыми на механические воздействия. Со временем, это приводит к ухудшению защиты модуля от влаги. Влага, попавшая внутрь модуля, ведет к коррозии электрических соединений, увеличению сопротивления в месте коррозии, перегреву и разрушению контакта или к уменьшению выходного напряжения модуля.

Второй фактор, уменьшающий выработку модуля - это постепенное уменьшение прозрачности пленки между стеклом и элементами. Это уменьшение не заметно невооруженным глазом, но ведет к снижению мощности модуля за счет того, что меньше света попадает на солнечные элементы.

Максимальное ухудшение обычно гарантируется производителями на уровне не более 20% за 25 лет. Однако измерения, проведенные на реально работающих с 1980 годов модулей показывают, что их выработка уменьшилась не более, чем на 10%. Очень многие из этих модулей и до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

Дерек Маркхэм, специалист в вопросах солнечной энергетики сайта CleanTechnica, дает ответ на вопрос, который интересует подавляющее большинство из тех, кто планирует обзавестись собственной солнечной установкой – сколько длится цикл жизни солнечных панелей ? Или, другими словами - сколько ими можно пользоваться ?

Когда мы принимаем решение об установке солнечной системы, то наиболее распространенными вопросом обычно является "сколько стоят солнечные панели?» Или «Во сколько обходятся солнечные батареи?». Это естественно, ведь для многих из нас собственная солнечная электростанция - это не только вопрос экологии и уменьшения вредных выбросов в атмосферу, но также и финансовый вопрос, который, в конце концов, сводится к разговору о нашем кошельке, пишет Ecotown .

Большинство солнечных модулей, которые используются в домашних электростанциях имеют гарантию около 25 или 30 лет. Это значит, что они гарантированно прослужат десятки лет - в отличие от большинства другой техники, которую мы часто покупаем. Кроме того, окончание гарантийного срока солнечной панели не значит, что она сразу после этого "умрет" и потребуется ее замена. Она так же будет продолжать свою работу, просто ее эффективность будет несколько снижаться с каждым годом. На самом деле, некоторые старые модели солнечных панелей уже более 40 лет производят электроэнергию и «умирать» никак не собираются. При этом ожидаемый период их службы составляет еще десятки лет.

Несколько лет назад Национальная Лаборатория Возобновляемой Энергии (National Renewable Energy Laboratory - NREL) провела исследования темпов "фотовольтаической деградации" на выборке из 2 000 солнечных электростанций. По результатам исследования, в среднем в год солнечная панель теряет около половины процента (0.5%) эффективности своей работы. Это значит, что по окончании 25-летнего гарантийного периода Ваша солнечная панель будет работать с все еще высоким уровнем эффективности - 88% от первоначального. Однако, далеко не каждая панель уменьшать свою эффективность на 0.5% ежегодно. Как свидетельствуют показатели некоторых солнечных модулей, работающих уже более 30 лет под солнечными лучами, их эффективность превышает ту, что указывалась в их документации.

Эти десятки лет жизни солнечных панелей делают экономику солнечных электростанций даже лучше, поскольку большинство систем окупятся за первые десять лет и будут продолжать поставлять своим владельца чистую энергию еще многие годы, поэтому вопрос "сколько служат солнечные панели " может быть просто не совсем корректным.

Очевидно, более правильным был бы вопрос "Каковы ожидаемые затраты на поддержание и замену частей солнечной электростанции ", поскольку солнечные панели нужно будет заменять в ближайшее время, однако ситуация с инвертором (устройством, преобразующим прямой ток от панелей в переменный, который можно передавать в общую сеть) совсем другое. Среднее время работы инвертора - 10-15 лет. Однако его эффективность не снижается постепенно, как в солнечной панели. Однажды он просто перестает работать. Обычно именно так происходит с так называемыми центральными инверторами. Однако в то же время есть хорошая альтернатива - микро-инверторы, которые можно устанавливать на каждой отдельной солнечной панели. Их срок службы должен быть выше чем у традиционных инверторов и может доходить до 25 лет.

Даже с учетом замены инвертора (или нескольких, если используются микро-инверторы) и реалий украинской экономики, инвестиция в солнечную систему - это один из самых выгодных объектов для капиталовложений.

Справка . Солнечная панель - несколько объединённых в модуль фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в электричество с постоянным током, в отличие, например, от солнечных коллекторов , которые производят нагрев жидкого теплоносителя.

Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника - от 5 до 20 лет.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Наиболее богатым опытом эксплуатации обладают кристаллические модули. Их начали устанавливать еще 50-х годах прошлого века, а массовое использование началось в конце 1970-х. Поэтому именно о долговечности таких модулей уже можно делать какие-то выводы.

Расчетный срок службы кристаллических модулей обычно 30 лет. Производители делают ускоренные тесты по эксплуатации модуля для того, чтобы оценить его реальный срок службы. Сами солнечные элементы, используемые в солнечных модулях, имеют практически неограниченный срок службы и показывают отсутствие деградации по прошествии десятков лет эксплуатации. Однако, выработка модулей со временем падает. Это результат 2 основных факторов - постепенное разрушение пленки, используемой для герметизации модуля (обычно используется этиленвинилацетатная пленка - ethylene vinyl acetate; EVA) и разрушение задней поверхности модуля (обычно поливинилфосфатная пленка), а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.

Герметик модуля защищает солнечные элементы и внутренние электрические соединения от воздействия влаги. Так как практически невозможно полностью защитить элементы от влаги, модули на самом деле "дышат", но это крайне трудно заметить. Влага, попавшая внутрь, выводится наружу днем, когда температура модуля возрастает. Солнечный свет постепенно разрушает герметизирующие элементы за счет ультрафиолетового излучения, и они становятся менее эластичными и более податливыми на механические воздействия. Со временем, это приводит к ухудшению защиты модуля от влаги. Влага, попавшая внутрь модуля, ведет к коррозии электрических соединений, увеличению сопротивления в месте коррозии, перегреву и разрушению контакта или к уменьшению выходного напряжения модуля.

Что влияет на КПД и эффективность работы солнечных батарей?

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей. Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком. Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации. В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей.

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи. Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно. Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.


Теперь непосредственно о самом КПД. Эта величина вычисляется делением мощности электроэнергии на мощность солнечной энергии, попадающей на панель. У современных солнечных батарей эта величина лежит в интервале 12─25 процентов (на практике не выше 15%). Теоретически можно поднять КПД до 80─85 процентов. Такая разница существует из-за материалов для изготовления панелей. В основе лежит кремний, который не поглощает ультрафиолет, а лишь инфракрасный спектр. Получается, что энергия ультрафиолетового излучения уходит впустую.

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии. Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов. Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.



Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность. В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца. Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.



Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.


А срок окупаемости существенно меньше, чем срок службы. Но многих останавливает первоначальная стоимость батарей. Вкупе с низким КПД у многих людей это вызывает сомнения в выгодности приобретения гелиосистем. Поэтому решение здесь нужно принимать с учётом погоды и климата в вашем регионе, условий использования и т. п.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.


Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Пожалуй, мечта каждого современного человека, понимающего, как важна экологическая чистота — независимость от внешнего источника энергии. К тому же, значительное подорожание электроэнергии заставляет задуматься об альтернативном источнике энергии. На помощь придут солнечные батареи, которые работают от неисчерпаемого ресурса — излучения солнца. Благо, на рынке представлен широкий ряд таких устройств. Состоят они из панелей, которые ловят солнечную энергию, контролера заряда, следящего за потоком энергии, аккумулятора, а также инвертора, преобразующего постоянный ток в переменный. Решив приобрести такое чудо техники, любой покупатель задастся вопросом: а какой срок службы солнечных батарей и панелей?

Что обещают производители?

Большинство производителей солнечных установок гарантируют, что срок службы их батарей и, соответственно, панелей равен тридцати годам. Существенная разница со сроком службы любой другой техники, согласитесь. К тому же, все мы понимаем, что гарантийный срок не означает, что на тридцать первый год батарея умрет и ее срочно нужно будет заменить. Очень вероятно, что она прослужит верой и правдой еще не один год, просто с вероятностью постепенного уменьшения эффективности и коэффициента полезного действия.

Факторы, которые влияют на срок службы батарей и панелей.

По сути, назвать срок работы с высокой точностью невозможно, так как существует ряд факторов, влияющих на данный показатель. Например, уменьшить срок жизни панелей может резкая смена температуры воздуха либо батареи могут перегреться. Но при этом фотоэлементы практически неубиваемые.

Разрушиться могут следующие детали: пленка для герметизации, задняя поверхность модуля и прослойка между стеклом и фотоэлементом. Ультрафиолет разрушает герметик, защищающий от влажности элементы и электрические соединения. Вследствие этого эластичность фотоэлементов уменьшается и они подвержены механическому повреждению. Если же произойдет замутнение прослойки, эффективность солнечной батареи значительно упадет, так как на фотоэлементы будет попадать мало солнечной энергии. Поэтому, если вы решили самостоятельно приступить к созданию солнечных батарей и панелей, помните, что герметик в разы увеличит срок их службы. Даже самый обычный силикон увеличит их прочность, позволив устройству выдержать самый резкий перепад температуры и другие воздействия.

Еще одним немаловажным фактором стоит назвать цену. Мы не утверждаем, что нужно приобретать дорогущие солнечные батареи, но, согласитесь, ждать высокого качества, например, от дешевых китайских панелей, не стоит. Сэкономив и купив такие, вы должны быть готовы к тому, что прослужат они меньше заводских. Выбирая батарею, обращайте внимание на мелочи: например, не совсем аккуратно спаянные элементы должны вас насторожить.

Выбираем солнечные батареи с длительным сроком службы.

С каждым годом производители совершенствуют свои устройства, в том числе пытаются увеличить срок их работы. Так, разработчики придумали пассивное охлаждение рабочей поверхности на панелях. В конструкцию батареи вмонтировали кристаллы из кварцевого стекла, отражающие инфракрасное излучение от самой установки.

Обращайте внимание также на маркировку. Выделяют три уровня качества:

  • А: при тестировании батареи ее уменьшение мощности равно не более 5%.
  • В: снижение мощности не больше 30%.
  • С: реальное снижение мощности больше 30%.

То есть, выяснив маркировку интересующей вас модели, вы будете наверняка знать ее реальный срок работы.