Что такое свитч и для чего нужны подобные устройства? Что такое хаб, свитч и роутер? Для чего нужен коммутатор в локальной сети.

Логическая топология сети Ethernet - это шина с множественным доступом, в которой все устройства используют общий доступ к одной и той же среде передачи данных. Эта логическая топология определяет, как узлы в сети просматривают и обрабатывают кадры, отправляемые и получаемые в этой сети. Тем не менее, в настоящее время практически во всех сетях Ethernet используется физическая топология типа «звезда» или «расширенная звезда». Это означает, что в большинстве сетей Ethernet оконечные устройства, как правило, подключаются к коммутатору LAN уровня 2 по принципу «точка-точка».

Коммутатор LAN уровня 2 осуществляет коммутацию и фильтрацию только на основе МАС-адреса канального уровня модели OSI. Коммутатор полностью прозрачен для сетевых протоколов и пользовательских приложений. Коммутатор уровня 2 создаёт таблицу МАС-адресов, которую в дальнейшем использует для принятия решений о пересылке пакетов. В процессе передачи данных между независимыми IP-подсетями коммутаторы уровня 2 полагаются на маршрутизаторы.

Коммутаторы используют MAC-адреса для передачи данных по сети через свою коммутирующую матрицу на соответствующий порт в направлении узла назначения. Коммутирующая матрица представляет собой интегрированные каналы и дополняющие средства машинного программирования, что позволяет контролировать пути прохождения данных через коммутатор. Чтобы коммутатор смог понять, какой порт необходимо использовать для передачи кадра одноадресной рассылки, сначала ему необходимо узнать, какие узлы имеются на каждом из его портов.

Коммутатор определяет способ обработки входящих кадров, используя для этого собственную таблицу МАС-адресов. Он создаёт собственную таблицу MAC-адресов, добавляя в нее MAC-адреса узлов, которые подключены к каждому из его портов. После внесения MAC-адреса для того или иного узла, подключённого к определённому порту, коммутатор сможет отправлять предназначенный для этого узла трафик через порт, который сопоставлен с узлом для последующих передач.

Если коммутатор получает кадр данных, для которого в таблице нет MAC-адреса назначения, он пересылает этот кадр на все порты, за исключением того, на котором этот кадр был принят. Если от узла назначения поступает ответ, коммутатор вносит MAC-адрес узла в таблицу адресов, используя для этого данные из поля адреса источника кадра. В сетях с несколькими подключёнными коммутаторами в таблицы MAC-адресов вносятся несколько MAC-адресов портов, соединяющих коммутаторы, которые отражают элементы за пределами узла. Как правило, порты коммутатора, используемые для подключения двух коммутаторов, имеют несколько MAC-адресов, внесённых в соответствующую таблицу.

В прошлом коммутаторы использовали один из следующих способов пересылки для коммутации данных между сетевыми портами:

    Коммутация с буферизацией

    Коммутация без буферизации

При коммутации с буферизацией, когда коммутатор получает кадр, он хранит данные в буфере до тех пор, пока не будет получен весь кадр. Во время сохранения коммутатор анализирует кадр, чтобы получить информацию о его адресате. При этом коммутатор также выполняет проверку на наличие ошибок, используя концевую часть кадра Ethernet циклического контроля избыточности (CRC).

При использовании коммутации без буферизации коммутатор обрабатывает данные по мере их поступления даже в том случае, если передача ещё не завершена. Коммутатор добавляет в буфер именно такое количество кадра, которое требуется для чтения MAC-адреса назначения, чтобы он смог определить, на какой порт пересылать данные. MAC-адрес назначения указан в 6 байтах кадра после преамбулы. Коммутатор ищет MAC-адрес назначения в своей таблице коммутации, определяет порт исходящего интерфейса и направляет кадр на свой узел назначения через выделенный порт коммутатора. Коммутатор не проверяет кадр на наличие каких-либо ошибок. Поскольку коммутатору не нужно ждать добавления в буфер всего кадра целиком, и при этом он не выполняет проверку ошибок, коммутация без буферизации происходит быстрее, чем коммутация с буферизацией. Тем не менее, так как коммутатор не проверяет ошибки, он пересылает повреждённые кадры по всей сети. При пересылке повреждённые кадры уменьшают пропускную способность. В конечном итоге сетевая плата назначения отклоняет повреждённые кадры.

Модульные коммутаторы предлагают большую гибкость конфигурации. Как правило, они поставляются с шасси различного размера, что позволяет устанавливать несколько модульных линейных плат. Порты фактически располагаются на линейных платах. Линейная плата вставляется в шасси коммутатора подобно платам расширения, устанавливаемым в ПК. Чем больше шасси, тем больше модулей оно поддерживает. Как показано на рисунке, на выбор предлагается множество различных размеров шасси. Если вы приобрели модульный коммутатор с 24-портовой линейной платой, вы можете легко установить еще одну такую же плату, в результате чего общее количество портов будет увеличено до 48.

Если раньше сетевой кабель, по которому происходила передача данных, просто подключали напрямую к компьютеру, то сейчас ситуация изменилась. В одной жилой квартире, в офисе или крупной компании часто возникает необходимость создать компьютерную сеть.

Для этого используются девайсы, которые входят в категорию «компьютерное оборудование». К таким девайсам относится и свитч, позволяющий . Так что же такое свитч, и как его применять для построения компьютерной сети?

Для чего нужны устройства свитч?

В дословном переводе с английского языка, компьютерный термин «свитч» обозначает устройство, которое используется для создания локальной сети через объединение нескольких компьютеров. Синоним слова свитч – коммутатор или переключатель.

Свитч является своеобразным мостом с множеством портов, через которые идет передача пакетных данных конкретным получателям. Свитч помогает оптимизировать работу сети, снижает нагрузку в ней, повышает уровень безопасности, фиксирует индивидуальные МАС-адреса, что позволяет быстро и качественно передавать данные.

Подобные коммутаторы смогли вытеснить хабы, которые ранее применялись для построения компьютерных сетей. Свитч – это умный девайс, способный обрабатывать получаемую информацию о подключенных устройствах, а потом перенаправлять данные по конкретному адресу. В результате в несколько раз повышается производительность сети и ускоряется работа Интернета.

Виды оборудования

Свитч-устройства делятся на разные виды по таким критериям:

  • Тип портов.
  • Количество портов.
  • Скорость работы портов – 10 Мбит/сек, 100 Мбит/сек и 1000 Сбит/сек.
  • Управляемые и неуправляемые устройства.
  • Производители.
  • Функции.
  • Технические характеристики.
  • По количеству портов свитч-коммутаторы делятся на:

    • 8-портовые.
    • 16-портовые.
    • 24-портовые.
    • 48-портовые.

    Для дома и небольшого офиса подойдет коммутатор на 8 или 16 портов, которые работают со скоростью 100 Мбит/секунду.

    Для больших предприятий, компаний и фирм нужны порты со скоростью работы 1000 Мбит в секунду. Такие устройства нужны для подключения серверов и крупного коммуникационного оборудования.

    Неуправляемые коммутаторы – самые простые из оборудования. Сложные коммутаторы управляются на сетевом или третьем уровне модели OSI – Layer 3 Switch.

    Также управление осуществляется через такие методы, как:

    • Веб-интерфейс.
    • Интерфейс командной строки.
    • Протоколы SNMP и RMON.

    Сложные или управляемые коммутаторы позволяют применять функции VLAN, QoS, зеркалирование и агрегирование. Также такие коммутаторы объединяют в одно устройство, которое называется стек. Оно предназначено для того, чтобы увеличить число портов. Для стекирования применяют другие порты.

    Что применяют провайдеры?


    Компании-провайдеры при создании компьютерной сети создают один из ее уровней:

    • Уровень доступа.
    • Уровень агрегации.
    • Уровень ядра.

    Уровни нужны для того, чтобы легче обращаться с сетью: масштабировать, настраивать, вводить избыточность, проектировать сеть.

    На уровне доступа свитч-устройства должно проводится подключение конечных пользователей к порту на 100 Мбит/сек. К другим требованиям, которые предъявляются к устройству, относятся:

    • Подключение через SFP к коммутатору уровня агрегации, где происходит передача информации на скорости в 1 гигабайт в секунду.
    • Поддержка VLAN, acl, port security.
    • Поддержка функций безопасности.

    По такой схеме происходит создание трех уровней сети от Интернет-провайдера. Сначала идет формирование сети на уровне жилого дома (многоэтажного, частного).

    Потом сеть «разбрасывается» на микрорайон, когда происходит присоединение к сети нескольких жилых домов, офисов, компаний. На последнем этапе создается сеть уровня ядра, когда к сети подключатся целые микрорайоны.

    Формирование сети у Интернет-провайдеров происходит с помощью технологии Ethernet, позволяющей подсоединить абонентов к сети.

    Как работает свитч?


    В памяти коммутатора находится МАС-таблица, в которой собираются все МАС-адреса. Их свитч получает в узел порта коммутатора. Когда происходит подключение свитч, то таблица еще не заполнена, поэтому оборудование работает в обучающем режиме. Данные поступают на другие порты коммутатора, свитч анализирует информацию, определяет МАС-адреса компьютера, с которого осуществлена передача данных. На последнем этапе адрес заносится в МАС-таблицу.

    Таким образом, когда на тот или иной порт оборудования поступит пакет данных, который предназначен только для одного ПК, то информация передается адресно на указанный порт. Когда МАС-адрес еще не определен, информация передается на остальные интерфейсы. Локализация трафика происходит в течение работы устройства свитч, когда МАС-таблица заполнена нужными адресами.

    Особенности настройки параметров устройства

    Внесение соответствующих изменений в параметры свитч-устройства проходит одинаково для каждой модели. Настройка оборудования требует выполнения поэтапных действий:

  1. Создать два порта VLAN – для клиентов и для управления коммутаторов. VLAN должны быть обозначены в настройках, как порты свитч.
  2. Настроить порт security, запретив получать больше одного МАС-адреса на порт. Это позволит избежать передачи информации на другой порт. Иногда может возникнуть слияние бродакстового домена домашней сети с доменом провайдера.
  3. Запретить STP на порте клиента, чтобы другие пользователи не смогли загрязнять сеть провайдера различными пакетами BPDU.
  4. Настроить параметр loopback detection. Это позволит отклонять неправильные, бракованные сетевые карточки, и не мешать работе пользователей, которые подключены к порту.
  5. Создать и настроить параметр acl, чтобы запретить прохождение пакетов не PPPoE в пользовательскую сеть. Для этого в настройках нужно заблокировать такие ненужные протоколы, как DCHP, ARP, IP. Подобные протоколы предназначены для того, чтобы пользователи общались напрямую, обходя протоколы PPPoE.
  6. Создать acl, который запрещает PPPoE РADO пакеты, приходящие с клиентских портов.
  7. Включить Storm Control, что позволит бороться с мультикастовыми и бродкастовыми флудами. Данный параметр должен заблокировать не PPPoE трафик.

Если что-то идет не так, то стоит проверить PPPoE, который может атаковаться вирусами или поддельными пакетами данных. По неопытности и незнанию пользователи могут некорректно настроить последний параметр, и тогда нужно обратиться за помощью к оператору провайдера Интернет-услуг.

Как подключать свитч?

Создание локальной сети из компьютеров или ноутбуков требует использования сетевого коммутатора – свитча. Перед настройкой оборудования и создания нужной конфигурации сети происходит процесс физического разворачивания сети. Это означает, что между коммутатором и компьютером создается связь. Для этого стоит использовать сетевой кабель.

Соединения между узлами сети происходит с помощью патч-корда – особого вида сетевого коммуникационного кабеля, сделанного на основе витой пары. Сетевой кабель рекомендуется приобретать в специализированном магазине, чтобы процесс подключения прошел без проблем.

Настроить свитч можно двумя способами:

  1. Через консольный порт, который предназначен для внесения первичных настроек свитча.
  2. Через универсальный порт Ethernet.

Выбор способа подключения зависит от интерфейса оборудования. Подключение через консольный порт не требует расхода полосы пропускания коммутатора. Это одно из достоинств данного способа подключения.

Необходимо запустить эмулятор терминала VT 100, потом выбрать параметры подключения в соответствии с обозначениями в документации. Когда произойдет соединение, пользователь или сотрудник Интернет-компании вводит логин и пароль.


Для подключения через порт Ethernet потребуется IP-адрес, который указывается в документах к устройству или запрашивается у провайдера.

Когда внесены настройки и с помощью свитч создана компьютерная сеть, пользователи со своих ПК или ноутбуков должны без проблем выйти в Интернет.

Выбирая устройство для создания сети, нужно учитывать, сколько компьютеров будут к ней подключены, какая скорость портов, как они работают. Современные провайдеры используют для подключения технологию Ethernet, позволяющую получить скоростную сеть с помощью одного кабеля.

18.03.1997 Дмитрий Ганьжа

Коммутаторы занимают центральное место в современных локальных сетях. ТИПЫ КОММУТАЦИИ КОММУТИРУЮЩИЕ КОНЦЕНТРАТОРЫ МЕТОДЫ ОБРАБОТКИ ПАКЕТОВ RISC И ASIC АРХИТЕКТУРА КОММУТАТОРОВ СТАРШЕГО КЛАССА ПОСТРОЕНИЕ ВИРТУАЛЬНЫХ СЕТЕЙ КОММУТАЦИЯ ТРЕТЬЕГО УРОВНЯ ЗАКЛЮЧЕНИЕ Коммутация - одна из самых популярных современных технологий.

Коммутаторы занимают центральное место в современных локальных сетях.

Коммутация - одна из самых популярных современных технологий. Коммутаторы вытесняют мосты и маршрутизаторы на периферию локальных сетей, оставляя за ними роль организации связи через глобальную сеть. Такая популярность коммутаторов обусловлена в первую очередь тем, что они позволяют за счет микросегментации повысить производительность сети по сравнению с разделяемыми сетями с той же номинальной пропускной способностью. Помимо разделения сети на мелкие сегменты, коммутаторы дают возможность организовать подключенные устройства в логические сети и легко перегруппировывать их, когда это необходимо; иными словами, они позволяют создавать виртуальные сети.

Что же такое коммутатор? Согласно определению IDC, "коммутатор - это устройство, конструктивно выполненное в виде концентратора и действующее как высокоскоростной многопортовый мост; встроенный механизм коммутации позволяет осуществлять сегментирование локальной сети и выделять полосу пропускания конечным станциям в сети" (см. статью М. Кульгина "Построить сеть, посадить дерево..." в февральском номере LAN ). Однако это определение относится в первую очередь к коммутаторам кадров.

ТИПЫ КОММУТАЦИИ

Под коммутацией обычно понимают четыре различные технологии - конфигурационную коммутацию, коммутацию кадров, коммутацию ячеек и преобразование между кадрами и ячейками.

Конфигурационная коммутация известна также как коммутация портов, при этом конкретный порт на модуле интеллектуального концентратора приписывается к одному из внутренних сегментов Ethernet (или Token Ring). Это назначение производится удаленным образом посредством программного управления сетью при подключении или перемещении пользователей и ресурсов в сети. В отличие от других технологий коммутации, этот метод не повышает производительности разделяемой локальной сети.

Коммутация кадров, или коммутация в локальной сети, использует стандартные форматы кадров Ethernet (или Token Ring). Каждый кадр обрабатывается ближайшим коммутатором и передается далее по сети непосредственно получателю. В результате сеть превращается как бы в совокупность параллельно работающих высокоскоростных прямых каналов. То, как осуществляется коммутация кадров внутри коммутатора, мы рассмотрим ниже на примере коммутирующего концентратора.

Коммутация ячеек применяется в ATM. Использование небольших ячеек фиксированной длины дает возможность создать недорогие высокоскоростные коммутирующие структуры на аппаратном уровне. И коммутаторы кадров, и коммутаторы ячеек могут поддерживать несколько независимых рабочих групп вне зависимости от их физического подключения (см. раздел "Построение виртуальных сетей").

Преобразование между кадрами и ячейками позволяет, например, станции с платой Ethernet непосредственно взаимодействовать с устройствами в сети ATM. Эта технология применяется при эмуляции локальной сети.

В данном уроке нас будет прежде всего интересовать коммутация кадров.

КОММУТИРУЮЩИЕ КОНЦЕНТРАТОРЫ

Первый коммутирующий концентратор под названием EtherSwictch был представлен компанией Kalpana. Этот концентратор позволял снизить конкуренцию в сети за счет сокращения числа узлов в логическом сегменте с помощью технологии микросегментации. По существу, число станций в одном сегменте сокращалось до двух: станция, инициирующая запрос, и станция, отвечающая на запрос. Никакая другая станция не видит передаваемую между ними информацию. Пакеты передаются как бы через мост, но без свойственной мосту задержки.

В коммутируемой сети Ethernet каждому члену группы из нескольких пользователей может быть одновременно гарантирована пропускная способность 10 Мбит/с. Понять, как такой концентратор работает, лучше всего помогает аналогия с обычным старым телефонным коммутатором, в котором участников диалога соединяет коаксиальный кабель. Когда абонент звонил по "вечному" 07 и просил соединить его с таким-то номером, оператор прежде всего проверял, доступна ли линия; если да, то он соединял участников непосредственно с помощью куска кабеля. Никто другой (за исключением спецслужб, разумеется) не мог слышать их разговор. После завершения разговора оператор отсоединял кабель от обоих портов и ждал следующего вызова.

Коммутирующие концентраторы действуют аналогичным образом (см. Рисунок 1): они передают пакеты со входного порта на выходной порт через коммутирующую матрицу. Когда пакет попадает на входной порт, коммутатор читает его MAC-адрес (т. е. адрес второго уровня), и он немедленно перенаправляется на порт, связанный с этим адресом. Если порт занят, то пакет помещается в очередь. По существу, очередь представляет собой буфер на входном порту, где пакеты ждут, когда нужный порт освободится. Однако методы буферизации несколько отличаются.

Рисунок 1.
Коммутирующие концентраторы функционируют аналогично прежним телефонным коммутаторам: они соединяют входной порт непосредственно с выходным через коммутирующую матрицу.

МЕТОДЫ ОБРАБОТКИ ПАКЕТОВ

При сквозной коммутации (называемой также коммутацией на лету и коммутацией без промежуточной буферизации) коммутатор считывает только адрес поступающего пакета. Пакет передается далее вне зависимости от отсутствия или наличия в нем ошибок. Это позволяет значительно сократить время обработки пакета, так как читаются только несколько первых байт. Поэтому определять дефектные пакеты и запрашивать их повторную передачу должна принимающая сторона. Однако современные кабельные системы достаточно надежны, так что необходимость в повторной передаче во многих сетях минимальна. Тем не менее никто не застрахован от ошибок в случае повреждения кабеля, неисправности сетевой платы или помех от внешнего электромагнитного источника.

При коммутации с промежуточной буферизацией коммутатор, получая пакет, не передает его дальше, пока не прочтет полностью, или во всяком случае не прочтет всю необходимую ему информацию. Он не только определяет адрес получателя, но и проверяет контрольную сумму, т. е. может отсекать дефектные пакеты. Это позволяет изолировать порождающий ошибки сегмент. Таким образом, коммутация с промежуточной буферизацией делает упор на надежность, а не на скорость.

Помимо двух вышеперечисленных, некоторые коммутаторы используют гибридный метод. В обычных условиях они осуществляют сквозную коммутацию, но при этом следят за числом ошибок посредством проверки контрольных сумм. Если число ошибок достигает заданного порогового значения, они переходят в режим коммутации с промежуточной буферизацией. При снижении числа ошибок до приемлемого уровня они возвращаются в режим сквозной коммутации. Такой тип коммутации называется пороговой или адаптивной коммутацией.

RISC И ASIC

Зачастую коммутаторы с промежуточной буферизацией реализуются на основе стандартных процессоров RISC. Одним из преимуществ такого подхода является их относительная дешевизна по сравнению с коммутаторами с интегральными схемами ASIC, однако он не очень хорош в случае специализированных приложений. Коммутация в таких устройствах осуществляется при помощи программного обеспечения, поэтому их функциональность может быть изменена посредством модернизации установленного ПО. Недостаток же их в том, что они медленнее коммутаторов на базе ASIC.

Коммутаторы с интегральными схемами ASIC предназначены для выполнения специализированных задач: вся их функциональность "зашита" в аппаратное обеспечение. В таком подходе есть и недостаток: когда необходима модернизация, производитель вынужден перерабатывать схему. ASIC обычно осуществляют сквозную коммутацию. Коммутирующая матрица ASIC создает выделенные физические пути между входным и выходным портом, как показано на .

АРХИТЕКТУРА КОММУТАТОРОВ СТАРШЕГО КЛАССА

Коммутаторы старшего класса имеют, как правило, модульную структуру, и они могут осуществлять как коммутацию пакетов, так и коммутацию ячеек. Модули такого коммутатора осуществляют коммутацию между сетями разных типов, в том числе Ethernet, Fast Ethernet, Token Ring, FDDI и ATM. При этом основным механизмом коммутации в таких устройствах является коммутационная структура ATM. Мы рассмотрим архитектуру таких устройств на примере Centillion 100 компании Bay Networks.

Коммутация осуществляется при помощи следующих трех аппаратных компонентов (см. Рисунок 2):

  • объединительная панель ATM для сверхвысокоскоростной передачи ячеек между модулями;
  • интегральная схема специального назначения CellManager на каждом модуле для управления передачей ячеек по объединительной панели;
  • интегральная схема специального назначения SAR на каждом модуле для преобразования кадров в ячейки и обратно.
  • (1x1)

    Рисунок 2.
    В коммутаторах старшего класса коммутация ячеек используется все чаще благодаря ее высокой скорости и простоте миграции к ATM.

    Каждый модуль коммутатора имеет порты ввода/вывода, буферную память и CellManager ASIC. Кроме того, каждый модуль для локальной сети имеет также процессор RISC для осуществления коммутации кадров между локальными портами и сборщика/разборщика пакетов для преобразования кадров и ячеек друг в друга. Все модули могут самостоятельно осуществлять коммутацию между своими портами, так что только трафик, предназначенный другим модулям, передается через объединительную панель.

    Каждый модуль поддерживает свою собственную таблицу адресов, а главный управляющий процессор сводит их в одну общую таблицу, благодаря чему отдельный модуль может видеть сеть в целом. Если, например, модуль Ethernet получает пакет, он определяет, кому этот пакет адресован. Если адрес находится в локальной таблице адресов, то RISC-процессор осуществляет коммутацию пакета между локальными портами. Если адресат находится на другом модуле, то сборщик/разборщик преобразует пакет в ячейки. CellManager указывает маску адресата для идентификации модуля(-ей) и порта(-ов), которым предназначен полезный груз ячеек. Всякий модуль, бит маски платы которого задан в маске адресата, копирует ячейку в локальную память и передает данные на соответствующий выходной порт в соответствии с заданными битами маски портов.

    ПОСТРОЕНИЕ ВИРТУАЛЬНЫХ СЕТЕЙ

    Кроме повышения производительности, коммутаторы позволяют создавать виртуальные сети. Одним из методов создания виртуальной сети является создание широковещательного домена посредством логического соединения портов внутри физической инфраструктуры коммуникационного устройства (это может быть как интеллектуальный концентратор - конфигурационная коммутация, так и коммутатор - коммутация кадров). Например, нечетные порты восьмипортового устройства приписываются к одной виртуальной сети, а четные - к другой. В результате станция в одной виртуальной сети оказывается изолированной от станций в другой. Недостаток такого метода организации виртуальной сети состоит в том, что все станции, подключенные к одному и тому же порту, должны принадлежать к одной и той же виртуальной сети.

    Другой метод создания виртуальной сети базируется на MAC-адресах подсоединенных устройств. При таком способе организации виртуальной сети любой сотрудник может подключать, например, свой портативный компьютер к любому порту коммутатора, и он будет автоматически определять принадлежность его пользователя к той или иной виртуальной сети на основе MAC-адреса. Такой метод разрешает также пользователям, подключенным к одному порту коммутатора, принадлежать к разным виртуальным сетям. Подробнее о виртуальных сетях см. статью А. Авдуевского "Такие реальные виртуальные сети" в мартовском номере LAN за этот год.

    КОММУТАЦИЯ ТРЕТЬЕГО УРОВНЯ

    При всех их достоинствах коммутаторы имеют один существенный недостаток: они не в силах защитить сеть от лавин широковещательных пакетов, а это ведет к непроизводительной загрузке сети и увеличении времени отклика. Маршрутизаторы могут контролировать и фильтровать ненужный широковещательный трафик, но они работают на порядок медленнее. Так, согласно документации Case Technologies, типичная производительность маршрутизатора составляет 10 000 пакетов в секунду, а это не идет ни в какое сравнение с аналогичным показателем коммутатора - 600 000 пакетов в секунду.

    В результате многие производители стали встраивать в коммутаторы функции маршрутизации. Чтобы работа коммутатора не замедлилась существенным образом, применяются различные методы: например, и коммутация второго уровня, и коммутация третьего уровня реализуются непосредственно в аппаратном обеспечении (в интегральных схемах ASIC). Разные производители называют эту технологию по-разному, но цель одна: маршрутизирующий коммутатор должен выполнять функции третьего уровня с той же скоростью, что и функции второго уровня. Немаловажным фактором является и цена такого устройства в расчете на порт: она тоже должна быть невысока, как и у коммутаторов (см. статью Ника Липписа в следующем номере журнала LAN).

    ЗАКЛЮЧЕНИЕ

    Коммутаторы и конструктивно, и функционально весьма разнообразны; в одной небольшой статье невозможно охватить все их аспекты. В следующем уроке мы подробно рассмотрим коммутаторы ATM.

    Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: [email protected] .


    Коммутаторы в локальной сети


    Вопросы построения локальных сетей представляются пользователям-неспециалистам весьма сложными из-за обширного терминологического словаря. Хабы и свитчи рисуются в воображении сложным оборудованием, напоминающим телефонные АТС, и создание локальной домашней сети становится поводом для обращения к специалистам. На самом же деле не так страшен свитч, как его название: оба устройства представляют собой элементарные узлы сети, обладающие минимальной функциональностью, не требующие знаний по установке и эксплуатации и вполне доступные каждому.

    Определение

    Хаб — сетевой концентратор, предназначенный для объединения компьютеров в единую локальную сеть посредством подключения Ethernet-кабелей.

    Свитч (switch — переключатель) — сетевой коммутатор, предназначенный для объединения в локальную сеть нескольких компьютеров через Ethernet-интерфейс.

    Сравнение

    Как видим из определения, разница между хабом и свитчем связана с видом устройств: концентратор и коммутатор. Несмотря на одну задачу — организацию локальной сети посредством Ethernet — подходят к ее решению устройства по-разному. Хаб представляет собой простейший разветвитель, обеспечивающий прямое соединение между клиентами сети. Свитч — более “умное” устройство, распределяющее пакеты данных между клиентами в соответствии с запросом.

    Хаб, получая сигнал от одного узла, передает его всем подключенным устройствам, и прием целиком зависит от адресата: компьютер должен сам распознать, ему ли предназначен пакет. Естественно, ответ предполагает ту же самую схему. Сигнал тычется во все сегменты сети, пока не найдет тот, который его примет. Это обстоятельство снижает пропускную способность сети (и скорость обмена данными, соответственно). Свитч, получая пакет данных от компьютера, направляет его именно по тому адресу, который был задан отправителем, избавляя сеть от нагрузки. Сеть, организованная посредством коммутатора, считается более безопасной: обмен трафиком происходит напрямую между двумя клиентами, и другие не могут обрабатывать сигнал, предназначенный не им. В отличие от хаба, свитч обеспечивает высокую пропускную способность созданной сети.

    Хаб Logitec LAN-SW/PS

    Свитч требует правильной настройки сетевой карты компьютера-клиента: IP адрес и маска подсети должны друг другу соответствовать (маска подсети указывает часть IP-адреса как адреса сети, а другую часть — как адреса клиента). Хаб настроек не требует, потому как работает на физическом уровне сетевой модели OSI, транслируя сигнал. Свитч работает на уровне канальном, осуществляя обмен пакетами данных. Еще одна особенность хаба — уравнивание узлов в отношении скорости передачи данных, ориентируясь на самые низкие показатели.


    Свитч COMPEX PS2208B

    Выводы сайт

    1. Хаб — концентратор, свитч — коммутатор.
    2. Хаб устройство простейшее, свитч — более “интеллектуальное”.
    3. Хаб передает сигнал всем клиентам сети, свитч — только адресату.
    4. Производительность сети, организованной через свитч, выше.
    5. Свитч обеспечивает более высокий уровень безопасности передачи данных.
    6. Хаб работает на физическом уровне сетевой модели OSI, свитч — на канальном.
    7. Свитч требует правильной настройки сетевых карт клиентов сети.