Делать дефрагментацию ssd. Можно и нужно ли дефрагментировать ssd диск: как продлить жизнь ssd

Здравствуйте! Меня зовут Александр Георгиевич! Я работаю репетитором по , и уже на протяжении 10 лет.

Ключевые направления моей преподавательской деятельности:

    Подготовка школьников к успешной сдаче и по информатике и математике.

    Подготовка студентов по различным .

    Выполнение на заказ всевозможных .

    Ведение образовательного YouTube-канала , на который я регулярно выкладываю мультимедийные видеоматериалы.

Если у вас есть непонимания, что такое « Декодирование информации » и что под этим процессом понимается, то рекомендую вам записаться на . На своих частных занятиях я со своими учениками помимо знакомства с теоретической частью решаю колоссальное количество различных тематических примеров.

В отличие от большинства других репетиторов я предлагаю своим клиентам абсолютно любые взаимодействия:

Информация, свойства информации, кодирование информации

Прежде чем переходить к анализу сведений, связанных с декодированием информации , вам в обязательном порядке стоит освежить в памяти такие темы, как « » и « ».

С таким понятием как «Декодирование информации » неразрывно связано другое – « ». Эти процессы являются антагонистами, то есть противопоставляются друг другу. Процесс декодирования невозможен без начального процесса кодирования какой-либо информации.

Если бы не существовало кодирования информации, то тогда бы не требовалось и проводить декодирование.

Рассмотрим два конкретных примера. Первый – бытовой, второй – промышленный.

Вы хотите передать другу текстовое email-сообщение, но не в обычном русскоязычном варианте, а специальном, чтобы никто не смог его правильно прочитать. Следовательно, вы задумываетесь о том, каким образом его можно зашифровать, закодировать. Не долго думая, вы выбираете следующий способ кодирования.

В чем его суть: каждую русскую букву передаваемого сообщения вы заменяется на букву, стоящую в алфавите через 5 позиций дальше. То есть буква « а» становится буквой «е», буква «б» становится буквой «ё» и так далее. По факту вы производите сдвиг позиции буквы на 5 единиц вперед.

Да, подобное кодирование крайне неустойчивое и легко «взламывается» злоумышленниками, но большинство людей не смогу раскодировать подобное сообщение за разумное время, так как не догадаются об алгоритме шифрования.

Когда ваш друг получает от вас закодированное текстовое сообщение он должен его декодировать, то есть воспользоваться алгоритмом вашего кодирования, но в «обратную сторону». Чтобы декодировать информацию , представленную таким информационным сообщением, ему следует произвести сдвиг каждой буквы на 5 позиций назад.

То есть буква «ё» станет буквой «б», а буква «е» станет буквой «а» и так далее. Это пример простейшего, тривиального кодирования и декодирования информации .

Пример промышленного "банковского" кодирования и декодирования информации

Давайте рассмотрим более сложный вариант шифрования информации. Допустим банковский служащий планирует передать в другую страну документ, содержащий информацию о банковских счетах клиентов банка. Передавать подобное сообщение в незащищенном варианте абсолютно опасно.

Существует большое количество устойчивых алгоритмов кодирования информации, я лишь вкратце поясню суть. Сначала вычисляется контрольная сумма файла (под файлом можно понимать передаваемый документ), затем файл разбивается на несколько пакетов.

Для каждого пакета также вычисляется контрольная сумма. Информация внутри каждого пакета кодируется одним из сложнейших современных алгоритмов шифрования. После этого начинается передача пакетов адресату. Адресат, получая пакеты, отправляет отправителю контрольные суммы.

Если контрольные суммы пакетов у отправителя и адресата совпадают, то все в порядке, несанкционированного доступа к этим пакетам не проводилось. Когда все пакеты переданы, они комплектуются в единый файл, происходит этап декодирования информации .

Разная информация кодируется по-разному

Также вам нужно понимать, что разные виды информации проходят различную обработку при декодировании. Под разными видами информации следует понимать

Остались вопросы? Звоните и записывайтесь на первый урок!

Если у вас остались вопросы, касающиеся декодирования информации , то звоните мне на мобильный телефон и записывайтесь на индивидуальные уроки по информатике и ИКТ. Я смогу вам пояснить абсолютно любой момент из данной темы, а также продемонстрирую на примерах, как правильно проводить декодирование «сложной» информации.

Своим потенциальным клиентам я предлагаю финансового взаимодействия, поэтому даже самый взыскательные клиент сумеет подобрать вариант, полностью удовлетворяющий его текущим потребностям.

Но голосом ведь всем её не донесёшь. Поэтому с давних времён был важен момент кодирования данных, чтобы они могли был прочитаны теми, для кого предназначалось. Постепенно также стало актуальным их шифрование. Необходимо было поместить в сообщение информацию, которая была понятна своим и не раскрыла смысла перед чужими. Обо всём этом мы и поговорим, выясняя, что такое кодирование и декодирование.

Разбираемся с терминологией

Без этого никак. Когда говорят о закодированном тексте, то это значит, что ему был сопоставлен другой набор символов. Это может быть использовано для увеличения надежности или же по той простой причине, что канал может использовать только ограниченное количество символом. Например, двоичный код, на котором работают современные компьютеры, построен на нулях и единицах.

Информация может быть закодирована в определённые символы и для того, чтобы её сохранить. В качестве примера можно привести результаты анализов, где содержатся показатели организма человека. Но наиболее популярным вопросом является такой: "Что такое кодирование и декодирование в информатике?" Искать ответ на него мы и будем.

О значении

Ранее процесс кодирования и декодирования информации играл вспомогательную роль и не рассматривался как отдельное направление математики. Но с появлением электронно-вычислительных машин ситуация существенно изменилась. Сейчас кодирование является центральным вопросом во время решения широкого спектра практических задач в программировании и поэтому пронизывает все информационные технологии. Так, с его помощью:

  1. Защищается информация от несанкционированного доступа.
  2. Обеспечивается помехоустойчивость при передаче по каналам связи данных.
  3. Представляется информация произвольной природы (графика, текст, числа) в памяти компьютера.
  4. Сжимается содержимое баз данных.

Об алфавите

Говоря о том, что такое кодирование и декодирование, сложно обойти вниманием основу всего этого. А именно, алфавит. Выделяют два вида - исходный и кодовый. В первом имеется начальная информация. Под кодовым подразумеваются изменённые данные, которые тем не менее могут при наличии ключа передать нам зашифрованное содержимое. В информатике для этого используется двоичный код, в основу которого положен алфавит, состоящий из нуля и единицы.

Давайте рассмотрим небольшой пример. Допустим, у нас есть два алфавита (А и Б), что состоят из конечного числа символов. Допустим, они выглядят следующим образом: А = {А0, А1, А2….А33}, Б = {Б0, Б1, Б3…Б34}. Элементы алфавита - это буквы. Тогда как их упорядоченный набор называется словом. У него есть определённая длина. Первая буква слова называется началом (префиксом), тогда как последняя - окончанием (постфиксом). Могут существовать различные правила построения конструкций. Например, одни системы кодирования информации требуют, чтобы был пропуск между словами, вторые обходятся без него. В целом алфавит необходим для построения универсальной системы отображения информации, её хранения, обработки и передачи. При этом предусматривается определённое соответствие между различными сигналами и элементами сообщений, которые в них зашифрованы.

Работа с данными

Когда информация преобразовывается в первоначальный вид, то происходящий при этом процесс называется декодирующим. Он должен выполняться по отношению к любым данным, что были зашифрованы. При этом используется так называемое обратное отображение (биекция). Давайте рассмотрим ситуацию с двоичной системой. У неё все кодовые слова обладают одинаковой длиной. Поэтому код называют равномерным (блочным). При этом кодирующей функцией выступает определённая подстановка. Можно взять в качестве примера вышеприведенную систему алфавита. Для обозначения определённых последовательностей используется множество элементарных кодов.

Допустим, что у нас есть А0 = {А, Б, В, Г} и Б0 = {1, 0}. Каким образом это можно представить компьютеру? А используя вот такую последовательность: А = 00, Б = 01, В = 10, Г = 11. Как видите, каждый символ имеет определённую кодировку. В компьютерную технику заносится справочная информация про алфавит кодирования, и она начинает ждать поступающих сигналов. Приходит нуль, за ним ещё один - ага, значит, это буква А. Если проводить параллели с набором слова в текстовом редакторе, то следует отметить, что будет передана не только одна буква, но и запущена соответствующая реакция на неё. Например, загорится определённая последовательность светодиодов монитора, где отображаются все введённые символы.

Специфика работы

Говоря про примеры кодирования и декодирования информации, следует отметить, что рассматриваемая система не является взаимно-однозначной. Например, букве А может соответствовать комбинация не только 00, но и 11, 10 или 01. Но при этом следует учитывать, что может быть только что-то одно. То есть за комбинацией закрепляется исключительно только определённый символ. Если схема кодирования подразумевает разделение любого слова на элементарные составляющие, то она называется разделимой. В случаях, когда одна буква не выступает в качестве начала другой, это префиксный подход. Это относится к вопросам программно-аппаратной составляющей. Определённое влияние на кодирование оказывает и архитектура, но из-за большого количества вариантов реализации рассматривать её довольно проблематично.

Побуквенное кодирование

Это наиболее простой подход. Если говорить про языки кодирования информации, то, пожалуй, это наиболее популярный вариант. В ограниченном варианте он был рассмотрен выше. Давайте узнаем, как выглядит код без разделителей. Допустим, у нас есть алфавит (исходный), в который помещены все русские буквы. Для кодирования используются десятичные цифры. Здесь А = 1, а Я = 33. Таким образом, последовательность букв АЯЯА можно передать как 133331. Если есть желание сделать алфавит равномерным, то необходимо внести определённые изменения. Так, для первых девяти букв придётся добавить по нулю. И рассмотренный нами пример АЯЯА превращается в 01333301.

Неравномерное кодирование

Рассмотренный ранее вариант считается удобным. Но в определённых случаях более умно сделать ставку на неравномерные коды. Это имеет смысл тогда, когда разные буквы в исходном тексте встречаются с различной частотой. Поэтому более частые символы имеет смысл кодировать короткими обозначениями, а редкие - длинными. Давайте построим бинарное дерево из букв русского алфавита. А на дополнение возьмём спецсимволы. Наиболее часто используются буквы, поэтому начинать мы будем с них: А - 0, Б - 1, В - 10, Г - 11 и так далее. И только после них уже будут использоваться знаки вопроса, процентов, двоеточия и прочие. Хотя, пожалуй, на первое место всё же следует поставить запятые и точки.

Об условии Фано

Теорема гласит, что любой код (префиксный и равномерный) допускает возможность однозначного кодирования. Допустим, что мы используем рассмотренный ранее пример с 01333301. Начинаем двигаться вправо. 0 ничего нам не даёт. А вот 01 позволяет идентифицировать букву А. Немного изменим начальный код и представим его как 01 333301. Далее выделяем первую Я, вторую и ещё одну А. В результате мы имеем 01 33 33 01. Хотя первоначально код был слитным, но сейчас мы можем с легкостью его декодировать, поскольку знаем, что в нём есть. А именно - А Я Я А. При этом заметьте, что он всегда расшифровывается однозначно, и никаких толкований в рамках принятой системы нет, благодаря чему можно обеспечить высокую достоверность передаваемой информации. Но как работают компьютеры?

Функционирование электронно-вычислительных машин

Кодирование и декодирование сигналов компьютерной техники базируется на использовании так называемых низких и высоких сигналов, которым в логическом измерении соответствуют нуль и единица. Что это значит? Допустим, у нас есть микроконтроллер. Если на один его вход поступает низкое напряжение в 1,5 В, то считается, что было передано значение логического нуля. Но если будет передано 5 В, то в соответствующую ячейку памяти будет записана единица. При этом необходимо добиться согласования источника информации с каналом связи. Вообще, при создании электроники необходимо учитывать большое количество различных моментов. Это и энергетические требования, и вид передаваемой информации (дискретная или непрерывная), и многое другое. При этом данные постоянно должны преобразовываться таким образом, чтобы они могли передаваться по каналам связи. Так, в случае с двоичной техникой сигналы представлены в виде напряжения, подаваемого на вход транзисторов или иных компонентов. Во время декодирования данные переводят сообщение в понятный для получателя вид.

Минимальная избыточность

На практике оказалось, что чрезвычайно важным является, чтобы код сообщения имел минимальную длину. Первоначально может показаться, какая разница - шесть, восемь или шестнадцать бит используется для кодирования? Но различия несущественны, если используется одно слово. А если миллиарды? Благо, можно подстроить алфавитное кодирование под все выдвигаемые требования. Но если про множество ничего неизвестно, то в таком случае сформулировать задачу оптимизации довольно трудно. Но на практике, как правило, всё же можно получить дополнительную информацию. Рассмотрим небольшой пример. Допустим, у нас есть сообщение, представленное на естественном языке. Но оно закодировано, и мы не можем прочитать его. Что нам поможет в задаче расшифровки? Как один из возможных вариантов - листок бумаги, на котором распределена вероятность появления букв. Благодаря этому построение оптимального кода в плане де/кодирования становится возможным с использованием точной математической формулировки и строгого решения.

Разбираем пример

Допустим, что у нас есть определённая разделимая схема алфавитного кодирования. Тогда все производные, что представляют собой упорядоченный набор, тоже будет иметь это свойство. При этом если длина элементарных кодов равна, то их перестановка не влияет на длину всего сообщения. Но если размер передаваемой информации напрямую зависит от того, какая последовательность букв, то, значит, были использованы составляющие различной протяженности. При этом, если есть конкретное сообщение и схема его кодирования, то можно подобрать такое решение задачи, когда его длина будет минимальной. Как этого достичь? Давайте рассмотрим подход с использованием алгоритма назначения элементарных кодов, позволяющего результативно подойти к решению задачи эффективности:

  1. Следует отсортировать буквы в порядке убывания количественного вхождения.
  2. Нужно разместить элементарные коды в порядке увеличения их длины.
  3. И как завершение, необходимо разместить составляющие в оптимальном порядке, чтобы наиболее частые символы занимали меньше всего места.

В целом система несложная. Если работать с небольшими объемами данных. Но с современными компьютерами такое реализовать довольно проблематично из-за значительного количества информации.

Заключение

Вот мы и рассмотрели, что такое система кодирования и декодирования информации, какой она может быть, что сейчас существует в информатике, а также множество иных вопросов. Но всё же следует понимать, что эта тема является чрезвычайно объемной, одной статьи для этого недостаточно. Как продолжение темы можно рассмотреть шифрование данных, криптографию, изменение отображения информации в различной электронике, уровни её обработки и множество других моментов. Но отрасль компьютерных наук по праву считается одной из самых сложных, поэтому изучить всё это быстро не получится. К тому же теоретические знания здесь ой как не равны практическим умениям. А именно последние и обеспечивают качественный результат.

Как известно, работа, а также распространение ЭВМ нуждается в более основательном подходе к системам передачи данных. Однако в данном случае наблюдается проблема, которая связана с тем, как изменить обыкновенную информацию, понятную человеку, чтобы с ней могла работать машина.


Определенной частью решения данной задачи выступает кодирование и декодирование информации.

Что означает понятие «кодирование»?

Код представляет собой совокупность символов, соответствующих определенным элементам информации либо характеристикам. Что касается самого процесса, при котором этот код составляется, он имеет название кодирования. Кодирование информации осуществляется с той целью, чтобы представить данные компактно и удобно, что необходимо при передаче и обработки на вычислительной технике. В ходе кодирования обработка состоит в поиске, сортировании, а также упорядочении существующих данных. Результатом этих процессом выступают выходные коды. После декодирования они являются конечной целью в обмене информацией между различными ЭВМ.

Что означает понятие «декодирование»?

Декодирование представляет собой операцию, процесс которой обратный кодированию. Таким образом, при нем по заранее указанному коду происходит поиск соответствующей информации или объекта. В качестве примера можно предложить ситуацию с телефонами. Когда выполняется набор номера, он поступает на автоматизированную телефонную станцию, где и декодируется,. В результате техника понимает, что требуется абоненту. Стоит отметить, что декодирование является достаточно сложным процессом, однако если задуматься, понять, как все происходит, несложно.

Как выполняется процесс кодирования?

Нужно сразу заметить, что он может осуществляться вручную или автоматически. Таким образом, при ручном кодировании применяются заранее составленные каталоги, где обозначается, что чему соответствует. После этого знаки наносятся на перфокарту либо перфоленту, они вводятся в ЭВМ, а информация перекодируется в машинный код.

Большое распространение получил автоматический метод кодирования. В ходе данного процесса все записывается при помощи слов, общепринятых обозначений, а также цифр в созданный на ЭВМ документ. Итоговый файл поступает для обработки в специальный автомат. Он осуществляет кодирование та, что получается максимально короткий машинный код. Он представляет удобство при поиске, сортировке и обработке данных. Автоматическое кодирование выполняется при условии наличия словаря, где конкретному коду соответствует одно слово.

Такой подход ведет к отсутствию необходимости в разделения информации по ее смыслу. Ее обработка происходит в понятном машинам виде. Таким образом, с ней можно уверенно работать, акцентируя процессорную мощь на более необходимые действия. Работа ЭВМ с такой информацией происходит за счет наличия ключевого кода. Он представляет собой единый массив информации, которая используется для всех решаемых задач. Процесс поиска выполняется на основании однозначности отношения признаков к предмету. Обычно он происходит по битовому адресу, однако способен применяться и порядковый регистрационный номер при отсутствии дополнительной информации. Стоит также указать на еще один способ кодирования, при котором происходит сортировка данных по их содержанию. Иными словами, осуществляется классификация, где роль играют только основные определяющие признаки.

Как происходит декодирование?

Декодирование информации находится в зависимости от способа кодирования, а также его типа и характеризующих особенностей. Таким образом, получить требуемую информацию, когда в качестве указателя выбрана другая техника, достаточно сложно. В данном случае важным является степень защищенности, а также защита данных. При получении электрических импульсов техника выполняет проверку, способна ли она их обработать.

Декодирование представляет собой достаточно сложный процесс, поскольку в ходе передачи данных могут быть потери сигналов, что ведет к негативным последствиям. Если получен утвердительный ответ, техника на основе определенных признаков проводит декодирование полученной информации в соответствии с существующими каталогами данных. Когда это невозможно, ЭВМ имеется процедура игнорирования, дающая возможность отсортировывать множество ненужной для него информации.

Виды кодов

Когда символы соответствуют конкретному предмету или характеристике, данный код является прямым. Если он имеет информацию о требуемом адресе, указывающем на местоположение нужных сведений, такой код называется адресным. Он используется при поиске больших массивов информации. Код может быть представлен в виде двоичного кодирования, машинного слова, байта, страницы и блока.

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

В зависимости от способа восприятия знаки делятся на:

  • зрительные (буквы и цифры, математические знаки, музыкальные ноты, дорожные знаки и др.);
  • слуховые (устная речь, звонки, сирены, гудки и др.);
  • осязательные (азбука Брайля для слепых, жесты-касания и др.);
  • обонятельные;
  • вкусовые.

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

  • иконические — их форма похожа на отображаемый объект (например, значок папки «Мой компьютер» на «Рабочем столе» компьютера);
  • символы — связь между их формой и значением устанавливается по общепринятому соглашению (например, буквы, математические символы ∫, ≤, ⊆, ∞; символы химических элементов).

Для представления информации используются знаковые системы, которые называются языками . Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Языки делятся на:

  • естественные (разговорные) — русский, английский, немецкий и др.;
  • формальные — встречающиеся в специальных областях человеческой деятельности (например, язык алгебры, языки программирования, электрических схем и др.)

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит . 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Например, пусть шарик находится в одной из четырех коробок. Таким образом, имеется четыре равновероятных события (N = 4). Тогда по формуле Хартли 4 = 2 I . Отсюда I = 2. То есть сообщение о том, в какой именно коробке находится шарик, содержит 2 бита информации.

Алфавитный подход

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log 2 32 = 5 битов.

Если N не является целой степенью 2, то число log 2 N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log 2 N", где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N" = 32; I = log 2 N" = log 2 (2 5) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

I = M · log 2 N.

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Решение. С помощью n лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 n сигналов. 2 5 < 50 < 2 6 , поэтому пяти лампочек недостаточно, а шести хватит.

Ответ: 6.

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log 2 101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log 2 128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Ответ: 70 байтов.

Вероятностный подход

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$I=-∑↙{i=1}↖{N}p_ilog_2p_i$,

где $I$ — количество информации;

$N$ — количество возможных событий;

$p_i$ — вероятность $i$-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

$p_1={1}/{2}, p_2={1}/{4}, p_3={1}/{8}, p_4={1}/{8}$.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

$I=-({1}/{2}·log_2{1}/{2}+{1}/{4}·log_2{1}/{4}+{1}/{8}·log_2{1}/{8}+{1}/{8}·log_2{1}/{8})={14}/{8}$ битов $= 1.75 $бита.

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 байт = 8 битов

1 килобайт (Кб) = 1024 байта = 2 10 байтов

1 мегабайт (Мб) = 1024 килобайта = 2 20 байтов

1 гигабайт (Гб) = 1024 мегабайта = 2 30 байтов

1 терабайт (Тб) = 1024 гигабайта = 2 40 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 0100 2 = В4 16 .

Ответ: В4 16 .

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации , или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000: 8: 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000: 8: 1024) ⋅ (3 ⋅ 60) = (2 8 ⋅ 10 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = (2 8 ⋅ 125 ⋅ 2 3: 2 3: 2 10) ⋅ (3 ⋅ 15 ⋅ 2 2) = 125 ⋅ 45 = 5625 Кбайт.

Ответ: 5625 Кбайт.

Представление числовой информации. Сложение и умножение в разных системах счисления

Представление числовой информации с помощью систем счисления

Для представления информации в компьютере используется двоичный код, алфавит которого состоит из двух цифр — 0 и 1. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Система счисления — это система записи чисел с помощью определенного набора цифр.

Система счисления называется позиционной , если одна и та же цифра имеет различное значение, которое определяется ее местом в числе.

Позиционной является десятичная система счисления. Например, в числе 999 цифра «9» в зависимости от позиции означает 9, 90, 900.

Римская система счисления является непозиционной . Например, значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.

Позиция цифры в числе называется разрядом . Разряд числа возрастает справа налево, от младших разрядов к старшим.

Количество различных цифр, употребляемых в позиционной системе счисления, называется ее основанием .

Развернутая форма числа — это запись, которая представляет собой сумму произведений цифр числа на значение позиций.

Например: 8527 = 8 ⋅ 10 3 + 5 ⋅ 10 2 + 2 ⋅ 10 1 + 7 ⋅ 10 0 .

Развернутая форма записи чисел произвольной системы счисления имеет вид

$∑↙{i=n-1}↖{-m}a_iq^i$,

где $X$ — число;

$a$ — цифры численной записи, соответствующие разрядам;

$i$ — индекс;

$m$ — количество разрядов числа дробной части;

$n$ — количество разрядов числа целой части;

$q$ — основание системы счисления.

Например, запишем развернутую форму десятичного числа $327.46$:

$n=3, m=2, q=10.$

$X=∑↙{i=2}↖{-2}a_iq^i=a_2·10^2+a_1·10^1+a_0·10^0+a_{-1}·10^{-1}+a_{-2}·10^{-2}=3·10^2+2·10^1+7·10^0+4·10^{-1}+6·10^{-2}$

Если основание используемой системы счисления больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение: В — двоичная система, О — восмеричная, Н — шестнадцатиричная.

Например, если в двенадцатеричной системе счисления 10 = А, а 11 = В, то число 7А,5В 12 можно расписать так:

7А,5В 12 = В ⋅ 12 -2 + 5 ⋅ 2 -1 + А ⋅ 12 0 + 7 ⋅ 12 1 .

В шестнадцатеричной системе счисления 16 цифр, обозначаемых 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, что соответствует следующим числам десятеричной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Примеры чисел: 17D,ECH; F12AH.

Перевод чисел в позиционных системах счисления

Перевод чисел из произвольной системы счисления в десятичную

Для перевода числа из любой позиционной системы счисления в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

17D,ECH = 12 ⋅ 16 -2 + 14 ⋅ 16 -1 + 13 ⋅ 160 + 7 ⋅ 16 1 + 1 ⋅ 16 2 = 381,921875.

Перевод чисел из десятичной системы счисления в заданную

Для преобразования целого числа десятичной системы счисления в число любой другой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например, переведем десятичное число 475 в двоичную систему счисления. Для этого будем последовательно выполнять деление нацело на основание новой системы счисления, т. е. на 2:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1 ⋅ 2 8 + 1 ⋅ 2 7 + 1 ⋅ 2 6 + 0 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 0 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 1 + 2 + 8 + 16 + 64 + 128 + 256 = 475 10 .

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например, переведем десятичную дробь 0,375 10 в двоичную систему счисления:

Полученный результат — 0,011 2 .

Не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части.

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Для записи восьмеричных чисел используются восемь цифр, т. е. в каждом разряде числа возможны 8 вариантов записи. Каждый разряд восьмеричного числа содержит 3 бита информации (8 = 2 І ; І = 3).

Таким образом, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например:

1234,777 8 = 001 010 011 100,111 111 111 2 = 1 010 011 100,111 111 111 2 ;

1234567 8 = 001 010 011 100 101 110 111 2 = 1 010 011 100 101 110 111 2 .

При переводе двоичного числа в восьмеричную систему счисления нужно каждую триаду двоичных цифр заменить восьмеричной цифрой. При этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например:

1100111 2 = 001 100 111 2 = 147 8 ;

11,1001 2 = 011,100 100 2 = 3,44 8 ;

110,0111 2 = 110,011 100 2 = 6,34 8 .

Для записи шестнадцатеричных чисел используются шестнадцать цифр, т. е. для каждого разряда числа возможны 16 вариантов записи. Каждый разряд шестнадцатеричного числа содержит 4 бита информации (16 = 2 І ; І = 4).

Таким образом, для перевода двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры и преобразовать каждую группу в шестнадцатеричную цифру.

Например:

1100111 2 = 0110 0111 2 = 67 16 ;

11,1001 2 = 0011,1001 2 = 3,9 16 ;

110,0111001 2 = 0110,0111 0010 2 = 65,72 16 .

Для перевода шестнадцатеричного числа в двоичный код необходимо каждую цифру этого числа представить четверкой двоичных цифр.

Например:

1234,AB77 16 = 0001 0010 0011 0100,1010 1011 0111 0111 2 = 1 0010 0011 0100,1010 1011 0111 0111 2 ;

CE4567 16 = 1100 1110 0100 0101 0110 0111 2 .

При переводе числа из одной произвольной системы счисления в другую нужно выполнить промежуточное преобразование в десятичное число. При переходе из восьмеричного счисления в шестнадцатеричное и обратно используется вспомогательный двоичный код числа.

Например, переведем троичное число 211 3 в семеричную систему счисления. Для этого сначала преобразуем число 211 3 в десятичное, записав его развернутую форму:

211 3 = 2 ⋅ 3 2 + 1 ⋅ 3 1 + 1 ⋅ 3 0 = 18 + 3 + 1 = 22 10 .

Затем переведем десятичное число 22 10 в семеричную систему счисления делением нацело на основание новой системы счисления, т. е. на 7:

Итак, 211 3 = 31 7 .

Примеры решения задач

Пример 1. В системе счисления с некоторым основанием число 12 записывается в виде 110. Указать это основание.

Решение. Обозначим искомое основание п. По правилу записи чисел в позиционных системах счисления 12 10 = 110 n = 0 ·n 0 + 1 · n 1 + 1 · n 2 . Составим уравнение: n 2 + n = 12 . Найдем натуральный корень уравнения (отрицательный корень не подходит, т. к. основание системы счисления, по определению, натуральное число большее единицы): n = 3 . Проверим полученный ответ: 110 3 = 0· 3 0 + 1 · 3 1 + 1 · 3 2 = 0 + 3 + 9 = 12 .

Ответ: 3.

Пример 2. Указать через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4.

Решение. Последняя цифра в записи числа представляет собой остаток от деления числа на основание системы счисления. 22 - 4 = 18. Найдем делители числа 18. Это числа 2, 3, 6, 9, 18. Числа 2 и 3 не подходят, т. к. в системах счисления с основаниями 2 и 3 нет цифры 4. Значит, искомыми основаниями являются числа 6, 9 и 18. Проверим полученный результат, записав число 22 в указанных системах счисления: 22 10 = 34 6 = 24 9 = 14 18 .

Ответ: 6, 9, 18.

Пример 3. Указать через запятую в порядке возрастания все числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101. Ответ записать в десятичной системе счисления.

Решение. Для удобства воспользуемся восьмеричной системой счисления. 101 2 = 5 8 . Тогда число х можно представить как x = 5 · 8 0 + a 1 · 8 1 + a 2 · 8 2 + a 3 · 8 3 + ... , где a 1 , a 2 , a 3 , … — цифры восьмеричной системы. Искомые числа не должны превосходить 25, поэтому разложение нужно ограничить двумя первыми слагаемыми (8 2 > 25), т. е. такие числа должны иметь представление x = 5 + a 1 · 8. Поскольку x ≤ 25 , допустимыми значениями a 1 будут 0, 1, 2. Подставив эти значения в выражение для х, получим искомые числа:

a 1 = 0; x = 5 + 0 · 8 = 5;.

a 1 =1; x = 5 + 1 · 8 = 13;.

a 1 = 2; x = 5 + 2 · 8 = 21;.

Выполним проверку:

13 10 = 1101 2 ;

21 10 = 10101 2 .

Ответ: 5, 13, 21.

Арифметические операции в позиционных системах счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Пример выполнения сложения : сложим двоичные числа 111 и 101, 10101 и 1111:

Пример выполнения вычитания: вычтем двоичные числа 10001 - 101 и 11011 - 1101:

Пример выполнения умножения: умножим двоичные числа 110 и 11, 111 и 101:

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Например, выполним сложение восьмеричных чисел 36 8 и 15 8 , а также вычитание шестнадцатеричных чисел 9С 16 и 67 16:

При выполнении арифметических операций над числами, представленными в разных системах счисления, нужно предварительно перевести их в одну и ту же систему.

Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой : каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 2 7 + 1 ⋅ 2 6 + 1 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 1 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 255 10 .

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2 n - 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом .

Для представления отрицательных чисел используется дополнительный код . Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2 n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа . (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа -2014 10 для шестнадцатиразрядного представления:

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

Например:

1) Найдем разность 13 10 - 12 10 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

13 10 = 1101 2 и 12 10 = 1100 2 .

Запишем прямой, обратный и дополнительный коды для числа -12 10 и прямой код для числа 13 10 в восьми битах:

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 8 10 - 13 10 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа -13 10 и прямой код для числа 8 10 в восьми битах:

Вычитание заменим сложением:

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 - 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число -5 10 .

Так как при п-разрядном представлении отрицательного числа А в дополнительном коде старший разряд выделяется для хранения знака числа, минимальное отрицательное число равно: А = -2 n-1 , а максимальное: |А| = 2 n-1 или А = -2 n-1 - 1.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = -2 31 = -2147483648 10 .

Максимальное положительное число равно

А = 2 31 - 1 = 2147483647 10 .

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой , использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

где $m$ — мантисса числа (правильная отличная от нуля дробь);

$q$ — основание системы счисления;

$n$ — порядок числа.

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

2674,381 = 0,2674381 ⋅ 10 4 .

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность ) или 8 байтов (двойная точность ). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 1111111 2 = 127 10 . Так как числа представляются в двоичной системе счисления, то

$q^n = 2^{127}≈ 1.7 · 10^{38}$.

Аналогично, максимальное значение мантиссы равно

$m = 2^{23} - 1 ≈ 2^{23} = 2^{(10 · 2.3)} ≈ 1000^{2.3} = 10^{(3 · 2.3)} ≈ 10^7$.

Таким образом, диапазон чисел обычной точности составляет $±1.7 · 10^{38}$.

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование , т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными . Они позволяют использовать 256 символов (N = 2 I = 2 8 = 256). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode . В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов (N = 2 16 = 65536). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Ответ: 32 байта или 496 битов.

Эксплуатация электронно-вычислительной техники для обработки данных стала важным этапом в процессе совершенствования систем управления и планирования. Но такой метод сбора и обработки информации несколько отличается от привычного, поэтому требует преобразования в систему символов, понятных компьютеру.

Что такое кодирование информации?

Кодирование данных - это обязательный этап в процессе сбора и обработки информации.

Как правило, под кодом подразумевают сочетание знаков, которое соответствует передаваемым данным или некоторым их качественным характеристикам. А кодирование - это процесс составления зашифрованной комбинации в виде списка сокращений или специальных символов, которые полностью передают изначальный смысл послания. Кодирование еще иногда называют шифрованием, но стоит знать, что последняя процедура предполагает защиту данных от взлома и прочтения третьими лицами.

Цель кодирования заключается в представлении сведений в удобном и лаконичном формате для упрощения их передачи и обработки на вычислительных устройствах. Компьютеры оперируют лишь информацией определенной формы, поэтому так важно не забывать об этом во избежание проблем. Принципиальная схема обработки данных включает в себя поиск, сортировку и упорядочивание, а кодирование в ней встречается на этапе ввода сведений в виде кода.

Что такое декодирование информации?

Вопрос о том, что такое кодирование и декодирование, может возникнуть у пользователя ПК по различным причинам, но в любом случае важно донести корректную информацию, которая позволит юзеру успешно продвигаться в потоке информационных технологий дальше. Как вы понимаете, после процесса обработки данных получается выходной код. Если такой фрагмент расшифровать, то образуется исходная информация. То есть декодирование - это процесс, обратный шифрованию.

Если во время кодирования данные приобретают вид символьных сигналов, которые полностью соответствуют передаваемому объекту, то при декодировании из кода изымается передаваемая информация или некоторые ее характеристики.

Получателей закодированных сообщений может быть несколько, но очень важно, чтобы сведения попали в руки именно к ним и не были раскрыты раньше третьими лицами. Поэтому стоит изучить процессы кодирования и декодирования информации. Именно они помогают обмениваться конфиденциальными сведениями между группой собеседников.

Кодирование и декодирование текстовой информации

При нажатии на клавиатурную клавишу компьютер получает сигнал в виде двоичного числа, расшифровку которого можно найти в кодовой таблице - внутреннем представлении знаков в ПК. Стандартом во всем мире считают таблицу ASCII.

Однако мало знать, что такое кодирование и декодирование, необходимо еще понимать, как располагаются данные в компьютере. К примеру, для хранения одного символа двоичного кода электронно-вычислительная машина выделяет 1 байт, то есть 8 бит. Эта ячейка может принимать только два значения: 0 и 1. Получается, что один байт позволяет зашифровать 256 разных символов, ведь именно такое количество комбинаций можно составить. Эти сочетания и являются ключевой частью таблицы ASCII. К примеру, буква S кодируется как 01010011. Когда вы нажимаете ее на клавиатуре, происходит кодирование и декодирование данных, и мы получаем ожидаемый результат на экране.

Половина таблицы стандартов ASCII содержит коды цифр, управляющих символов и латинских букв. Другая ее часть заполняется национальными знаками, псевдографическими знаками и символами, которые не имеют отношения к математике. Совершенно ясно, что в различных странах эта часть таблицы будет отличаться. Цифры при вводе также преобразовываются в двоичную систему вычисления согласно стандартной сводке.

Кодирование чисел

Подобный метод кодирования точек изображений применяется и в полиграфической отрасли. Только здесь принято задействовать четвертый цвет - черный. По этой причине полиграфическую систему преобразования обозначают аббревиатурой CMYK. Эта система для представления изображений использует целых тридцать два двоичных разряда.

Способы кодирования и декодирования информации предполагают использование различных технологий, в зависимости от типа вводимых данных. К примеру, графических изображений шестнадцатиразрядными двоичными кодами называется High Color. Эта технология дает возможность передавать на экран целых двести пятьдесят шесть оттенков. Уменьшая количество задействованных двоичных разрядов, применяемых для шифрования точек графического изображения, вы автоматически уменьшаете объем, необходимый для временного хранения информации. Такой метод кодирования данных принято называть индексным.

Кодирование звуковой информации

Теперь, когда мы рассмотрели, что такое кодирование и декодирование, и методы, лежащие в основе этого процесса, стоит остановиться на таком вопросе, как кодирование звуковых данных.

Звуковую информацию можно представить в виде элементарных единиц и пауз между каждой их парой. Каждый сигнал преобразовывается и сохраняется в памяти компьютера. Звуки выводятся с помощью который используется хранящиеся в памяти ПК зашифрованные комбинации.

Что касается человеческой речи, то ее гораздо сложнее закодировать, ведь она отличается многообразием оттенков, и компьютеру приходится сравнивать каждое словосочетание с эталоном, предварительно занесенным в его память. Распознавание произойдет лишь в случае, когда сказанное слово будет найдено в словаре.

Кодирование информации в двоичном коде

Существуют различные методики реализации такой процедуры, как кодирование числовой, текстовой и графической информации. Декодирование данных обычно происходит по обратной технологии.

При кодировании чисел даже учитывается цель, с которой цифра была введена в систему: для арифметических вычислений или просто для вывода. Все данные, кодируемые в двоичной системе, шифруются с помощью единиц и ноликов. Эти символы еще называют битами. Этот метод кодировки является наиболее популярным, ведь его легче всего организовать в технологическом плане: присутствие сигнала - 1, отсутствие - 0. У двоичного шифрования есть лишь один недостаток - это длина комбинаций из символов. Но с технической точки зрения легче орудовать кучей простых, однотипных компонентов, чем малым числом более сложных.

Преимущества двоичного кодирования

  • Такая форма представления информации подходит для различных ее видов.
  • При передаче данных не возникает никаких ошибок.
  • ПК намного легче обрабатывать данные, закодированные таким способом.
  • Требуются устройства с двумя состояниями.

Недостатки двоичного кодирования

  • Большая длина кодов, которая несколько замедляет их обработку.
  • Сложность восприятия двоичных комбинаций человеком без специального образования или подготовки.

Заключение

Ознакомившись с этой статьей, вы смогли узнать, что такое кодирование и декодирование и для чего его используют. Можно сделать вывод, что используемые методики преобразования данных полностью зависят от типа информации. Это может быть не только текст, а еще и числа, изображения и звук.

Кодирование различной информации позволяет унифицировать форму ее представления, то есть сделать однотипной, что значительно ускоряет процессы обработки и автоматизации данных при дальнейшем использовании.

В электронно-вычислительных машинах чаще всего используют принципы стандартного двоичного кодирования, которое исходную форму представления информации преобразовывает в формат, более удобный для хранения и дальнейшей обработки. При декодировании все процессы происходят в обратном порядке.