Сканеры в цифровой фотографии. Зачем нужна белая полоска в сканере


Сканирующие системы на основе контактных датчиков изображения CIS (Contact Image Sensor) приобрели чрезвычайно большую популярность у производителей сканеров, копировальных аппаратов, многофункциональных офисных устройств (МФУ), факсов. И поэтому при ремонте и диагностике всех этих устройств часто возникает необходимость убедиться в исправности сканирующей линейки, которую иногда называют еще и сканирующей головкой. Автор предлагает ознакомиться с одним из вариантов диагностики этой важнейшей части сканирующих устройств.

Технология LIDE (Light Indirect Exposure), разработанная компанией CANON, является одной из разновидностей контактных датчиков изображения (КДИ), получивших в литературе наименование CIS. В контактных датчиках изображения для считывания строки используется линейка фотоприемников, в качестве которых, чаще всего, используются фототранзисторы. Количество фотоприемников соответствует количеству точек в сканируемой строке, т.е. каждым фотоприемником воспринимается одна точка (один пиксел) сканируемого изображения. Каждому фотодетектору соответствует своя фокусирующая линза, позволяющая собрать и сфокусировать на поверхности фотодетектора световой поток, отраженный от одного пикселя изображения оригинала. Общий принцип сканирования изображения с помощью CIS демонстрируется на рис. 1.

Рис. 1. Принцип сканирования изображения с помощью CIS

Как видно из рисунка, линейка светочувствительных датчиков занимает всю ширину сканируемой строки, и при этом максимально плотно прилегает к стеклу сканера. Так как сканирование осуществляется в масштабе 1:1, то отпадает необходимость в сложной оптической системе, что и является главным преимуществом технологии CIS.

Главной особенностью технологии LIDE является оригинальная конструкция сканирующей лампы. В общем-то, как таковой, лампы и нет. Вместо лампы используются три светодиода, размещенных в боковой части сканирующей головки, и пластиковый световод специальной формы (рис. 2). Этот световод обеспечивает распространение светового потока, излучаемого светодиодом, на всю длину строки, и перенаправление его на сканируемое изображение.

Рис. 2. Конструкция световода сканирующей головки

Внутреннее устройство сканирующей линейки LIDE представлено на рис. 3. Таким образом, в составе сканирующей головки имеется три светодиодные "лампы" с разным цветом свечения, причем эти лампы должны иметь независимое управление (рис. 4).

Рис. 3. Внутреннее устройство сканирующей линейки LIDE

Рис. 4. Схема управления светодиодными лампами

При сканировании цветных изображений, оригинал должен поочередно засвечиваться светом трех различных цветов: красным (R), зеленым (G) и синим (B). Во время сканирования в полноцветном режиме эти "лампы" переключаются с достаточно высокой частотой, в результате чего создается иллюзия того, что документ сканируется белым светом, что, на самом деле, не соответствует действительности.

Развитие кооперации в отрасли производства оргтехники и периферийных устройств привело к тому, что одна и та же LIDE-головка может использоваться в самых различных устройствах разных производителей. Так, например, в сканирующих устройствах начального уровня очень широкое распространение получила CIS-головка фирмы CANON с маркировкой CLG-60216G (рис. 5). Этот LIDE-модуль можно встретить в сканерах фирм CANON и BENQ, в МФУ и копировальных аппаратах CANON, в МФУ, выпускаемых компаниями Samsung, Xerox и HP Такое массовое использование этой LIDE-головки имеет положительные стороны, ведь у сервисных специалистов появляется возможность проводить замены совместимых модулей, из, казалось бы, абсолютно разных и несовместимых между собой устройств. Так, например, автором данной статьи была проведена успешная замена модуля CIS в аппарате "Samsung SCX-4100", причем заменяемый модуль был взят от сканера "BenQ 5250C".

Рис. 5. CIS-головка фирмы CANON с маркировкой CLG-60216G

Итак, при возникновении достаточно многих неисправностей сканирующих устройств можно наблюдать ситуацию, когда сканирующие лампы не включаются, и сканер не входит в режим готовности, а переходит в состояние фатальной ошибки. Причин для такого поведения сканера может быть несколько:

Неисправность LIDE-модуля;

Неисправность управляющего микропроцессора;

Неисправность двигателя, перемещающего LIDE-каретку;

Неисправность датчика начальной позиции сканирующей каретки (в случае его наличия).

Таким образом, специалисту, производящему диагностику такого устройства, необходимо определить, исправна ли LIDE-головка, или же имеется проблема в другом узле.

Каким образом можно проверить исправность LIDE-головки, рассмотрим на примере упомянутой выше и широко используемой головки CANON CLG-60216G.

Полная проверка исправности LIDE-головки достаточно трудоемка и требует наличия, как минимум, такого оборудования, как осциллограф, мультиметр, лабораторный источник питания и генератор. Автор предлагает рассмотреть упрощенный вариант диагностики CIS-головки, заключающийся в проверке только лишь ее модуля подсветки. Такая диагностика позволит убедиться в том, что все три лампы LIDE-модуля исправны.

Рассматриваемый модуль имеет 12-контактный разъем, с помощью которого осуществляется его подключение к основной плате сканера посредством плоского шлейфа (см. рис. 5). Назначение контактов этого разъема приведено в таблице, а местоположение контакта 1 показано на рис. 6. Исходя из приведенной информации, метод проверки ламп LIDE-модуля напрашивается сам собой.

Рис. 6. 12-контактный разъем модуля CLG-60216G

Для включения каждой лампы необходимо лишь приложить к ней соответствующее напряжение. Поэтому для диагностики потребуется всего лишь одно устройство - регулируемый источник питания, способный формировать на своем выходе постоянное напряжение в диапазоне 0...3,5 В.

Процедура тестирования модуля выглядит следующим образом:

1. Включают источник питания и устанавливают на его выходе напряжение около 3,3 В.

2. "Плюс" источника питания прикладывают к контакту 8 (VLED).

3. "Минус" источника питания прикладывают к контакту 11 (RLED). В результате должна загореться светодиодная "лампа" красного цвета. Изменение величины питающего напряжения должно приводить к изменению яркости свечения лампы.

4. Далее "минус" источника питания прикладывают к контакту 10 (GLED). В результате должна загореться "лампа" зеленого цвета. Ее яркость должна изменяться пропорционально изменению величины напряжения на контакте 8 (VLED).

5. Аналогично лампу синего цвета, прикладывая к контакту 9 (BLED) "минус" источника питания.

Таким образом, проверив все три источника света, можно с уверенностью говорить о полной исправности модуля подсветки LIDE-головки. Общая схема диагностического стенда для проверки CIS-модуля представлена на рис. 7.

Рис. 7. Схема диагностического стенда для проверки CIS-модуля

При проведении данной процедуры тестирования можно столкнуться с интересной особенностью. Дело в том, что красный светодиод является наиболее ярким и загорается даже при приложении к нему напряжения 2,5 В, в то время как зеленый и синий светодиоды загораются при напряжении на них более 3 В.

Иногда встречаются LIDE-головки с 16-контактным разъемом, но и для них все рассказанное выше абсолютно справедливо. Дело в том, что в 16-контактном разъеме четыре последних контакта не используются, а назначение первых 12 контактов полностью совпадает с тем, что описано в таблице.

Таблица. Назначение контактов разъема на модуле CLG-60216G

№ контакта

Обозначение

Описание

Линия передачи данных, считываемых фотодетекторами

"Земля" для фотодетекторов

Напряжение питания фотодетекторов

Опорное напряжение для фотодетекторов

Стартовый импульс, определяет моменты считывания информации фотодетекторами

Тактовая частота для передачи данных, считываемых фотодетекторами

Напряжение питания для светодиодных ламп

Сигнал управления синей светодиодной лампой (активный низкий уровень)

Сигнал управления зеленой светодиодной лампой (активный низкий уровень)

Сигнал управления красной светодиодной лампой (активный низкий уровень)

Конечно же, данная методика не является полной и не позволяет проверить исправность фотодетекторов, но, тем не менее, является очень наглядной и информативной, позволяя убедиться в том, что LIDE-головка исправна "в принципе". Данный метод диагностики удобно применять в ситуации, когда имеются подозрения на исправность управляющего контроллера и соединительного шлейфа сканера. Неисправность этих элементов, как и LIDE-головки, проявляется в отсутствии свечения сканирующих ламп, а также в биении сканирующей каретки в край копировального стола на этапе инициализации при включении сканера/МФУ/копировального аппарата.

В заключение хотелось бы обратить внимание на то, что проверить светодиоды LIDE-модуля можно и самым обычным тестером в режиме "проверка диодов". Для этого следует "прозвонить" диоды между контактами VLED и RLED, GLED, BLED. При тестировании необходимо изменять полярность подключения щупов прибора, чтобы обеспечивать открытое и закрытое состояние тестируемых светодиодов модуля. При этом свечение "ламп" не будет интенсивным (возможно, лампы вообще не загорятся), и им невозможно будет управлять. Но, тем не менее, получить ответ на вопрос об исправности светодиодов вполне возможно.

Конструкция абсолютно любого устройства, в особенности, если оно (устройство) включает в себя как электронные, так и механические элементы, может показаться неосведомленному человеку кладезем тайн и загадок, в которых ой как трудно разобраться самому. Планшетные сканеры – как раз такой вариант. При первом рассмотрении устройство сканера не кажется каким-то уж особо сложным: корпус с немногочисленными разъемами и парочкой кнопок, съемная крышка планшета, да стекло, на которое кладутся оригиналы для сканирования. Но вот как "хозяйство" работает, и что обозначают цифры его спецификации – это уже, как говорится, совершенно другая песня. Чтобы научиться ориентироваться в многочисленных моделях сканеров, представленных сегодня на компьютерном рынке, нужно представлять себе реальное значение указываемых производителями характеристик. Но чтобы данная статья была более познавательной, разберем конструкцию сканера, как говорится, в буквальном смысле слова "разберем".
Начнем, пожалуй, с самого важного элемента любого сканера – светочувствительной матрицы, являющейся как бы его "глазами".

Матрица

Да. Именно матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). С этой точки зрения, АЦП можно сравнить с гидом-переводчиком, неизменным ее компаньоном. Только он как никто другой понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Только он способен обеспечить работой всех своих цифровых коллег, воспринимающих лишь один язык – язык нулей и единиц. С другой стороны, можно взять любой процессор, преобразователь или усилитель, осветить их самым ярким источником света и ожидать какой-либо реакции столь долго, пока не надоест. Результат заранее известен – он будет нулевой, ибо никакие другие электронные компоненты сканера к нему не чувствительны. Если угодно, все они незрячи от рождения. Другое дело – матрица. Световой поток, падая на ее поверхность, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП. Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока. А дальше… Дальше электроны будут представлять собой цифровую информацию, обработкой которой займутся другие специалисты. Работа над воссозданием изображения больше не требует помощи матрицы.
Но оставим общие рассуждения. Давайте рассмотрим практическую сторону дела. Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Сей факт порождает в умах пользователей два вопроса: в чем разница и что лучше? Если разница заметна даже невооруженным взглядом – корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм), то ответить на второй вопрос гораздо сложнее. Ответ здесь нужно аргументировать, чтобы избежать лавины порождаемых вопросов типа "а чем он лучше?", "а почему он лучше?".
Для начала давайте рассмотрим основные достоинства и недостатки этих двух классов сканеров. Для удобства я свел их в небольшую табличку:


CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.






На рисунке, для простоты восприятия, нарисовано лишь одно зеркало,
тогда как у типового сканера их не менее трех-четырех


Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. В этом плане, пользователю хочется получить скан с наиболее точной и достоверной цветопередачей, а в аспекте светочувствительности CCD-сканер гораздо строже передает цветовые оттенки, света и полутона, нежели CIS-сканер. Отмечу, что погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.



Схематическое представление CIS-сенсора


CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, таким образом, сканер, в котором используется контактный сенсор, всегда будет намного тоньше своего CCD-собрата. К тому же, такие аппараты славятся низким энергопотреблением; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.
Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Другими словами, положив на планшет такого сканера толстую книгу, получишь скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом. У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата. Однако с другой стороны, именно оптика обеспечивает очевидный выигрыш в качестве. Замечу, требования к оптике очень высоки, поэтому слухи, что в некоторых моделях сканеров применяются, де, "пластмассовые зеркала" сильно преувеличены, если не сказать "вымышлены". ;)
В плане разрешающей способности CIS-сканеры также не конкурент CCD. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено, если не ошибаюсь, пока что 1200 dpi. Но, в общем-то, сбрасывать со щитов CIS-технологию не стоит. Все технологии стремительно развивается. Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров. Оцифровать оригинал и перевести его в текстовый файл они могут где бы то ни было, не завязываясь с близостью электрических сетей, что позволяет закрыть глаза на ряд недостатков контактного сенсора. Собственно поэтому, ответить на вопрос "какой сканер лучше" можно исходя из ваших конкретных запросов.



Самый важный элемент сканера – CCD-матрица


На приведенной выше фотографии вы видите CCD-матрицу, которая представляется "большой микросхемой" со стеклянным окошком. Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Замечу, что общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера (об этом мы поговорим чуть позже). За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.



Вид сбоку на CCD-матрицу


На виде сбоку можно заметить два обычных винта, которые выполняют "деликатную" роль". С их помощью на этапе сборки сканера производилась точная юстировка матрицы (обратите также внимание на П-образные прорези в печатной плате на виде сверху), чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. Кстати, в случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".



Увеличенное изображение части CCD-матрицы (макросъемка
произведена цифровым фотоаппаратом Canon EOS D60)


На увеличенной фотографии CCD-матрицы достаточно хорошо видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов, о чем многие говорят, но мало кто представляет, как на самом деле это работает. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.



Объектив сканера на самом деле не так велик, как кажется на
фотографии

Корпус


Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости, которые можно сравнить с нервюрами и лонжеронами самолета.



Расположение основных функциональных узлов сканера


Немаловажным элементом корпуса является транспортный фиксатор, наличие которого призвано уберечь сканирующую каретку от повреждений при транспортировке сканера. Необходимо помнить, что перед включением любого сканера, оснащенного таким фиксатором, нужно осуществить его разблокировку. В противном случае, можно повредить механизмы аппарата. В принципе, производители акцентируют внимание покупателей на этот небольшой нюанс яркими наклейками с соответствующими предупреждениями.
Некоторые полагают, что уж корпус-то никак не может влиять на качество сканирования. Однако это далеко не так. Дело в том, что оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических). Мне не раз попадались модели, которые таким требованиям не соответствовали. Если вам предстоит покупка сканера, то я порекомендовал бы обратить на это внимание.
Также при покупке сканера обратите внимание на возможность отделения крышки планшета. Такое свойство аппарата особенно полезно при сканировании таких оригиналов, как толстые книги или журналы.
Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала. Также обратите внимание на наличие разметки по периметру планшета.

Блок управления

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители идут навстречу самым неподготовленным пользователям, и устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".



Кнопки быстрого сканирования – элемент, без которого можно обойтись





На приведенной выше фотографии видно, что каждой кнопке соответствует определенный значок. Типовые функции быстрого старта обычно подразумевают запуск стандартной операции сканирования, с выводом на принтер, с последующей отправкой по электронной почте, по факсу и т.п. Понятно, что для той или иной кнопки заданы конкретные параметры качества сканирования. Впрочем, нажатие на ту или иную кнопку сначала приводит к запуску на компьютере приложения (если таковых несколько), отвечающего за вызываемую операцию. Замечу, что далеко не все SOHO-сканеры снабжены собственным блоком управления, а в профессиональных аппаратах такие элементы отсутствуют и подавно.
Некоторые производители "грешат" тем, что исключают из драйвера сканера ряд настроек, которыми, по их мнению, не пользуются большинство рядовых пользователей. Так, например, в SOHO-сканерах Hewlett-Packard отсутствует возможность изменения gamma-коррекции, загрузки ICC-профилей и многого другого. Зато именно Hewlett-Packard как никто другой любит "баловать" пользователей наличием ряда кнопок быстрого сканирования.

Об источниках света

Абсолютно в каждом сканере используется свой осветитель. Так называется небольшой и мощный модуль, в задачу которого входит включение и выключение лампы сканера (или того, что эту лампу заменяет). В CIS-сканерах в качестве источников света применяют светодиодную линейку, за счет чего данный класс аппаратов потребляет так мало энергии.
В CCD-сканерах оригиналы стандартно освещает люминесцентная лампа с холодным катодом. Ее свет в тысячи раз ярче светодиодов. Но для того чтобы вызвать свечение газа внутри лампы нужно подать на ее вход очень высокое напряжение. Его вырабатывает отдельный блок, называемый инвертором.



Высоковольтный модуль необходим для питания лампы


Инвертор повышает напряжение с пяти Вольт до нескольких киловольт, а также преобразует постоянный ток в переменный.

Вообще различают три главных вида ламп, использующихся в сканерах:

ксеноновая газоразрядная лампа (Xenon Gas Discharge);
флуоресцентная лампа с горячим катодом (Hot Cathode Fluorescent);
флуоресцентная лампа с холодным катодом (Cold Cathode Fluorescent)

Однако в сканерах для дома и офиса по ряду причин используются лишь лампы с холодным катодом.



Лампа с холодным катодом


Лампа сканера закреплена на пластмассовом шасси сканирующей каретки непосредственно над отражателем. Сам отражатель имеет форму рефлектора (эффективного "собирателя" и отражателя света) в форме увеличительного зеркала. Свет от него усиливается, чтобы ярко осветить объект на планшете. Отразившись от оригинала на стекле, свет проходит сквозь щель шасси (на фотографии ее контур я выделил голубым цветом) и принимается первым, самым длинным зеркалом оптической системы.
Среди очевидных преимуществ лампы с холодным катодом можно отметить большой срок службы, который составляет 5 000 – 10 000 часов. По этой причине, кстати, в некоторых сканерах не используются отключение лампы после завершения операции сканирования. Кроме этого, лампы не требуют какого-то дополнительного охлаждения и очень дешевы при производстве. Из недостатков отмечу очень медленное включение. Типовое время разогрева лампы от 30 секунд до нескольких минут.
Лампа оказывает важное воздействие на результат сканирования. Даже при небольшом уходе характеристик источника света изменяется и падающий на приемную матрицу отраженный от оригинала световой поток. Отчасти поэтому и нужно столь длительное время разогрева лампы перед сканированием. Замечу, что некоторые драйверы позволяют уменьшить время разогрева, если качество оцифровки не так важно (например, при сканировании текстовой информации). Добавлю, чтобы как-то скомпенсировать уход характеристик лампы (а это неизбежно происходит при длительной эксплуатации аппарата), сканеры автоматически выполняют процедуру самокалибровки по черно-белой мишени, располагающейся внутри корпуса.



На фотографии хорошо заметно, как под воздействием света с течением
времени тускнеет корпусная пластмасса и калибровочная мишень


Исследуемый сканер не исключение. На приведенной фотографии хорошо видна цветовая мишень, по которой сканер подстраивает цвета перед сканированием, компенсируя "старение" лампы. Здесь видно также и то, что с течением времени тускнеет не только перманентно освещаемая лампой внутрикорпусная пластмасса, но и сама калибровочная мишень. Это, в свою очередь, приводит к уходу цветов и увеличению цветовых искажений.



Лампа с холодным катодом чем-то напоминает лампу дневного
света… только маленькую



При желании из инвертора и лампы с холодным катодом можно
соорудить настольную лампу


На фотографии вы видите нецелевое использование лампы сканера. ;) Модуль инвертора был подключен к стандартному компьютерному блоку питания, для чего к его плате были подпаяны проводки с переходничком. В принципе, если сюда приспособить какой-нибудь держатель, то выйдет довольно-таки неплохая и яркая настольная лампа.

Работа АЦП

Кто помогает процессору сканера "найти общий язык" с матрицей? Конечно же, аналого-цифровой преобразователь, занимающийся переводом аналоговых сигналов в цифровую форму. Этот интересный процесс можно представить следующим образом. Сначала АЦП как бы "взвешивает" входное напряжение, напоминая продавца в магазине, подбирающего набор стандартных гирек того же веса, что и товар. Затем, когда напряжение измеряно, АЦП представляет данные своему "боссу", то бишь процессору, но уже в виде цифр. И в результате все довольны.
Можно представить себя в роли процессора и поинтересоваться, что же происходит на выходе АЦП, при смене входного напряжения? Подадим, к примеру, на вход преобразователя 4 Вольта, потом 9 Вольт. На его выходе появятся следующие вариации цифр: сначала 00000100, затем 00001001. В двоичном коде это цифры 4 и 9. Количество же нулей и единиц, которыми АЦП выражает измеренное значение – это его разрядность, которая измеряется в битах. Такой параметр, как разрядность преобразователя крайне важен для сканера, ведь он характеризует точность измерения входного сигнала.
Сегодня на прилавках магазинов можно увидеть недорогие сканеры, в которых работают преобразователи с разрядностью от 24 до 48 бит. Теоретически всегда лучше выбирать сканер, у которого разрядность больше. При этом следует учитывать одну тонкость: иногда производители крупно пишут на коробках "48 bit", а где-нибудь в уголке мелким шрифтом уточняют: "software 48 bit, hardware 36 bit". Это означает, что большая красивая цифра не имеет ничего общего к точности установленного в сканере АЦП, а реальная разрядность в этом случае составляет 36 бит. Именно на нее и следует ориентироваться. Следует признать, что в домашней практике различия между результатами работы 36-ти и 42-х-битных сканеров практически незаметны (человеческий глаз способен различить примерно 24 бита цветовых оттенков, т.е. около 16,7 млн.). В нашем случае, разрядность преобразователя и глубина цвета – это одно и то же. Ведь преобразователь рассчитывает не что иное, как цвета точек, из которых складывается изображение. Чем больше разрядность преобразователя, тем достовернее сканер может передать цвет каждой точки изображения. Соответственно, тем больше изображение будет походить на оригинал.

Процессор

Современные сканеры оснащают специализированными процессорами. В число задач такого процессора входит согласование действий всех цепей и узлов, а также формирование данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на процессор возлагаются также функции контроллера интерфейса.
Список программных инструкций для процессора хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства. Содержимое микросхемы называется "микропрограммой" или "firmware". У некоторых профессиональных сканеров предусмотрена возможность ее обновления, но в недорогих моделях для дома и офиса это обычно не требуется.
Помимо микросхемы постоянной памяти в сканерах используется и оперативная память, играющая роль буфера (ее типовые значения – 1 или 2 Мбайт). Сюда направляется сканируемая информация, которая практически сразу передается на ПК. После отправки содержимого из памяти персональному компьютеру, процессор обнуляет буфер для формирования новой посылки. Замечу, что инструкции для процессора также заносятся в ячейки оперативной памяти, но уже самого процессора (для этого он оснащен несколькими килобайтами собственной "оперативки"). Организация его памяти построена по принципу конвейера, т.е. после выполнения инструкции, стоящей в очереди первой, ее место занимает вторая, а место последней – новая инструкция.
Объем оперативной памяти сканера ранее указывался производителями в технических спецификациях сканеров. Однако, т.к. данный параметр практически не сказывается на быстродействии аппарата, в современных сканерах он часто умалчивается. Умалчивается он и в том случае, если конкретный сканер использует некоторую область оперативной памяти самого компьютера, что реализуется средствами драйвера.

Контроллер интерфейса

За обмен информацией и командами между сканером и компьютером отвечает контроллер интерфейса. Как я отмечал выше, данная микросхема может отсутствовать в том случае, если процессор располагает интегрированным модулем контроллера. В эпоху "двушек" и "трешек" сканеры выпускались с интерфейсами SCSI, IEEE1284 (LPT) и даже с RS-232. Сегодняшний ассортимент SOHO-сканеров огранивается интерфейсами USB, FireWire и SCSI. Одно время ходили слухи о появлении Bluetooth-сканеров, но пока дальше слухов дело не пошло. Совершенно очевидно, что в аппаратах с разными интерфейсами установлены такие же разные контроллеры. Между собой они не совместимы, потому как "говорят на разных языках".



В нашем случае интерфейсная плата сочетает SCSI- и USB-порты, а также
располагает двумя гнездами для подключения дополнительных модулей



SCSI (Small Computer Systems Interface)

Сканеры с интерфейсом SCSI были наиболее распространены несколько лет назад. Надо признать, что эра SCSI-сканеров подходит (или уже подошла) к концу. Основная причина – появление высокоскоростных интерфейсов USB и FireWire, не требующих ни особой деликатности при подключении, ни дополнительных адаптеров. Среди достоинств SCSI-интерфейса можно выделить его высокую пропускную способность, а также возможность подключения до семи различных устройств на одну шину. Из основных недостатков SCSI – высокую стоимость организации интерфейса и необходимости задействования дополнительного контроллера.

USB (Universal Serial Bus)

Интерфейс USB получил самое широкое распространение благодаря его интеграции во все современные системные платы в качестве основного разъема для периферийных устройств. Сегодня абсолютное большинство сканеров для дома выпускается именно с USB-интерфейсом. Кроме того, группа CIS-сканеров получает необходимое питание по USB-порту, чем привлекает владельцев портативных компьютеров. Согласитесь, такое качество не реализуешь посредством SCSI.

FireWire (IEEE1394)

При выборе типа подключения, по крайней мере, для меня FireWire-интерфейс является более предпочтительным. FireWire представляет собой последовательный высокоскоростной интерфейс ввода/вывода, отличаясь от USB тем, что для обеспечения соединения он не требует управляющего контроллера. Организация его работы выполнена по схеме peer-to-peer. Собственно за счет этого и достигается более низкая (в сравнении с USB) загрузка центрального процессора.
В скором времени свет увидят периферийные устройства с новой модификацией этого интерфейса – FireWire 800 (IEEE1394b). Именно тогда он станет самым скоростным среди периферийных стандартов, которые когда-либо были разработаны.

Протяжный механизм

Основной подвижный модуль сканера – его сканирующая каретка. В нее входят оптический блок, с системой линз и зеркал, светочувствительная матрица, лампа с холодным катодом (если это CCD-сканер) и плата инвертора. К сканирующей каретке жестко закреплен зубчатый протяжный ремень, который приводит в движение шаговый двигатель аппарата.



Место крепления ремня к сканирующей каретке



Элементы протяжного механизма


За плотный контакт ремня с шестеренками отвечает специальная натяжная пружина, которая надевается непосредственно на него. Лафет со сканирующей кареткой перемещается по направляющим салазкам, вдоль корпуса аппарата (см.фото).

Двигатель



Шаговый двигатель


Шаговый электродвигатель (Step Motor) может поворачивать шпиндель в обе стороны совсем небольшими шажками. Из-за этой особенности всегда есть возможность переместить каретку сканера на строго определенное расстояние. Такой двигатель есть в каждом планшетном сканере. Он вращает редуктор (шестеренки, которые вы видите на фотографии) и приводит в движение каретку, в которой заключен оптический блок, лампа, и матрица. За выбор направления и скорости вращения отвечает специальная микросхема – контроллер двигателя. Точность перемещения каретки называют механическим разрешением по направлению "Y" (Y-direction).



Оптическое разрешение сканера – направление X, а его
механическое разрешение – направление Y


Вообще, оптическое разрешение определяется числом элементов линии матрицы, деленное на ширину рабочей области. Механическое – число шагов сканирующей каретки по направлению движения Y. В спецификациях к сканерам можно встретить обозначения, типа, "600х1200". Здесь вторая цифра и есть механическое разрешение, тогда как первая характеризует оптическое разрешение сканера. Различают также интерполированное разрешение, которое иногда на несколько порядков больше значений оптического, но никак не зависит от физического оснащения аппарата. Я бы назвал его "разрешением масштабирования". Функции интерполирования (увеличения оригинального изображения) исполняет программное обеспечение сканера. Ценность указываемых производителями значений интерполяции сомнительна – любое изображение можно с тем же успехом увеличить средствами Photoshop.



Внутренности двигателя



Редуктор


Сердечник двигателя с внешней стороны соединен зубчатой передачей, представляющей простейший редуктор. Его большая шестеренка и протягивает ремешок, к которому закреплена сканирующая каретка.

Блок питания



Блок питания сканера


Домашние или офисные сканеры потребляют не слишком много энергии от сети, поэтому в блоках питания SOHO-аппаратов не найти мощных элементов. Внутренний блок питания рассматриваемого в данной статье аппарата выдает напряжения 24 Вольт / 0.69 А, 12 Вольт / 0.15 А и 5 Вольт / 1 А. Т.к. для источника света – лампы с холодным катодом, требуется высокое напряжение в несколько киловольт, за ее питание отвечает отдельный блок, о котором я рассказывал чуть выше.

Дополнительные устройства

Для многих планшетных сканеров выпускаются сопутствующие дополнительные приспособления, в большинстве случаев приобретаемые отдельно. Из таковых можно отметить автоподатчик документов и адаптер для сканирования прозрачных оригиналов (слайд-адаптер).



Сканер с автоподатчиком документов представляет собой громоздкую
конструкцию


Автоподатчик бумаги требуется в тех случаях, когда приходится сканировать множество печатных листов стандартного формата. Удостовериться, что к вашему сканеру можно подключить автоподатчик достаточно просто. Для этого можно просто взглянуть на панель подключений и убедиться в наличии гнезда ADF (Automatic Document Feeder). Следует заметить, что автоподатчик документов всегда "привязан" к конкретной модели сканера, либо к серии моделей. Универсального податчика не существует! Причина заключается в том, что данное устройство управляется с интерфейсной платы сканера. Понятно, что работа податчика невозможна при отсутствии связи со сканером, поэтому при покупке будьте внимательны, и удостоверьтесь, что ваш сканер поддерживает работу с конкретным автоподатчиком.



Вид на прозрачное окошко автоподатчика документов с другой
стороны стекла


Работает автоподатчик следующим образом. После этапа автокалибровки и проверки готовности сканер позиционирует каретку перед прозрачным окном автоподатчика. Затем, с его входного лотка поочередно забираются листовые оригиналы, и при проходе через означенное окно они оцифровываются.
Слайд-адаптер представляет собой дополнительное приспособление, предназначенное для оцифровки прозрачных оригиналов (пленок, слайдов и негативов). Существуют два типа таких адаптеров: пассивный, который использует лампу сканера, и активный, просвечивающий прозрачный оригинал собственной лампой.
Активный слайд-адаптер оснащен собственным источником света, просвечивающим прозрачный оригинал. Некоторые модели таких слайд-адаптеров имеют подвижную каретку с источником света, которая приводится двигателем и протяжным механизмом. Источник света перемещается вдоль направляющей, согласно позиционирования каретки сканера. Собственная лампа сканера при этом отключается. Сегодня более распространены модели сканеров для дома и офиса без подвижных частей в модуле слайд-адаптера. Типичный пример – не так давно протестированный нашей тестовой лабораторией EPSON Perfection 3200 Photo . Его источник света встроен в крышку сканера и занимает всю ее полезную поверхность. Для согласования адаптера со сканером из крышки выходит провод с разъемом, подключающийся к специальному гнезду на задней панели аппарата (оно обозначается аббревиатурой XPA). Активизация лампы адаптера происходит автоматически при смене типа оригинала в управляющей программе, что дополнительно сообщается индикатором в крышке сканера. Прозрачные оригиналы устанавливаются в прилагаемые в комплекте шаблоны, которые поддерживают: ленту 35 мм пленки из 12 кадров, четыре 35 мм слайда вставленных в рамки, пленки 120/220 (6 х 9 см) / 4 х 5"". Ну а сами шаблоны кладутся на стекло сканера. Во время сканирования, поток света проходит сквозь прозрачный оригинал, и, попадая на вход оптической системы сканера, обрабатывается аналогичным (как и непрозрачный оригинал) образом. Понятно, что такие свойства сканера, как оптическое разрешение и глубина света при использовании слайд-адаптера не меняются, чего не скажешь о диапазоне оптических плотностей. Этот параметр сканера напрямую зависит от яркости источника света и времени экспонирования. Представить это можно так: чем темнее оригинал, тем меньше света он пропускает, тем дольше нужно времени, чтобы накопители CCD-матрицы собрали нужное количество заряда. Самый темный из прозрачных оригиналов – это рентгеновские пленки (до 3.6D). Чтобы получить с них качественный скан, нужен яркий источник света. Однако диапазон воспроизводимых оптических плотностей сканера отнюдь не определяется только лишь яркостью лампы. Главным образом он зависит от разрядности (или точности) аналого-цифрового преобразователя, качества оптической системы и способностей светочувствительной матрицы.
Пассивный слайд-модуль устроен проще, нежели активный. Такой адаптер использует в качестве источника света лампу самого сканера. Интенсивность светового потока в этом случае существенно ниже, чем в случае с активным адаптером. Соответственно, ниже и качество отсканированных изображений, которое вполне приемлемо, к примеру, для Web. Пассивные слайд-адаптеры также отличаются невысокой ценой.

Заключение

В общем-то, о сканере, как о сложнейшем электронном приборе можно рассказывать довольно долго, но все равно в рамках одной статьи невозможно передать всех интересных нюансов. Сегодня мы выяснили следующее: по каким причинам CCD-сканеры оцифровывают оригиналы гораздо качественнее, чем аппараты с контактным сенсором; почему важна разрядность преобразователя, и чем отличается оптическое разрешение от механического; какие бывают источники света и как они влияют на качество сканирования; как осуществляется взаимодействие электронных и механических частей сканера, и почему слайд-адаптеры подходят далеко не всем аппаратам. В общем, я постарался как можно в более доступной форме рассказать об особенностях современных SOHO-сканеров, и мне будет небезынтересно узнать ваше мнение об этой статье.

Любое многофункциональное устройство (МФУ) состоит из принтера и сканера. И если описан весьма комплексно и подробно, то статей по ремонту сканера МФУ практически нет. Данная статья посвящена ремонту сканеров МФУ, их диагностике, совместимости и замене.

Сканеры в МФУ состоят из платы управления, двигателя и блока сканера, направляющих с демпфером и шлейфов. В ряде случаев двигатель находится в блоке сканера.

Основная особенность ремонта сканеров многофункциональных устройств заключается в том, что блоки сканера имеют разную конструкцию, характеристики и интерфейсы. Например, нельзя заменить блок сканера от устройства с большим разрешением в устройство с меньшим разрешением, хотя конструкция и разъемы совпадают. Этот блок не будет опознаваться МФУ.

В качестве подсветки раньше использовались лампы, теперь светодиодные линейки.

Блок сканера имеет единую конструкцию, объединяющую подсветку, оптику и светочувствительную матрицу и плату электроники. Обычно блок сканера можно заменить только целиком. Иногда можно переставить элементы в разборном блоке, например, лампу. В ламповых сканерах наиболее частой причиной выхода из строя является перегорание лампы, либо снижение ее светимости. В этом случае МФУ не выходит в рабочий режим. Примером таких МФУ являются HP LaserJet 3330. Отдельно лампы подсветки для сканеров найти бывает трудно, если вообще возможно. Замена блока сканера стоит 2500-3000 руб, если удастся найти подходящий.

В современных устройствах блок сканера делается на основе светодиодной линейки и служит значительно дольше. Диагностика неисправности - МФУ не выходит в готовность.
В некоторых дешевых сканерах ломаются оси шестеренок, сделанные из пластика. Диагностика: треск из сканера. Ремонт такой неисправности стоит 1500 руб.

Если сгорел двигатель сканера МФУ, то его можно заменить, если найти подходящий с донора, либо заказать новый. Признаки неисправности двигателя сканера - блок сканера не двигается при включении питания. Цена ремонта 2-3 тыс. руб.

При выяснилось, что причиной ошибки было стекло сканера, у которого были незначительные дефекты возле белой начальной полосы. Рефракция света на мелких дефектах стекла способна привести к сбоям сканирующего узла.

У нас можно купить сканирующий узел (1500 руб.), двигатель (1000 руб.), шлейф (500 руб.).

В МФУ Samsung SCX-4521 часто бывает неисправен шлейф сканера, читайте про
В сканерах с автоподатчиком оригинала выходит из строя датчик бумаги и ролик подачи. Цена ремонта сканера в этом случае около 1500 т.р. Если податчик документа не реагирует на положение датчика бумаги, то неисправен форматер - основная плата МФУ.

Конструкция абсолютно любого устройства, в особенности, если оно (устройство) включает в себя как электронные, так и механические элементы, может показаться неосведомленному человеку кладезем тайн и загадок, в которых ой как трудно разобраться самому. Планшетные сканеры – как раз такой вариант. При первом рассмотрении устройство сканера не кажется каким-то уж особо сложным: корпус с немногочисленными разъемами и парочкой кнопок, съемная крышка планшета, да стекло, на которое кладутся оригиналы для сканирования. Но вот как "хозяйство" работает, и что обозначают цифры его спецификации – это уже, как говорится, совершенно другая песня. Чтобы научиться ориентироваться в многочисленных моделях сканеров, представленных сегодня на компьютерном рынке, нужно представлять себе реальное значение указываемых производителями характеристик. Но чтобы данная статья была более познавательной, разберем конструкцию сканера, как говорится, в буквальном смысле слова "разберем".
Начнем, пожалуй, с самого важного элемента любого сканера – светочувствительной матрицы, являющейся как бы его "глазами".

Матрица

Да. Именно матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). С этой точки зрения, АЦП можно сравнить с гидом-переводчиком, неизменным ее компаньоном. Только он как никто другой понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Только он способен обеспечить работой всех своих цифровых коллег, воспринимающих лишь один язык – язык нулей и единиц. С другой стороны, можно взять любой процессор, преобразователь или усилитель, осветить их самым ярким источником света и ожидать какой-либо реакции столь долго, пока не надоест. Результат заранее известен – он будет нулевой, ибо никакие другие электронные компоненты сканера к нему не чувствительны. Если угодно, все они незрячи от рождения. Другое дело – матрица. Световой поток, падая на ее поверхность, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП. Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока. А дальше… Дальше электроны будут представлять собой цифровую информацию, обработкой которой займутся другие специалисты. Работа над воссозданием изображения больше не требует помощи матрицы.
Но оставим общие рассуждения. Давайте рассмотрим практическую сторону дела. Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Сей факт порождает в умах пользователей два вопроса: в чем разница и что лучше? Если разница заметна даже невооруженным взглядом – корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм), то ответить на второй вопрос гораздо сложнее. Ответ здесь нужно аргументировать, чтобы избежать лавины порождаемых вопросов типа "а чем он лучше?", "а почему он лучше?".
Для начала давайте рассмотрим основные достоинства и недостатки этих двух классов сканеров. Для удобства я свел их в небольшую табличку:

CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.




На рисунке, для простоты восприятия, нарисовано лишь одно зеркало,
тогда как у типового сканера их не менее трех-четырех


Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. В этом плане, пользователю хочется получить скан с наиболее точной и достоверной цветопередачей, а в аспекте светочувствительности CCD-сканер гораздо строже передает цветовые оттенки, света и полутона, нежели CIS-сканер. Отмечу, что погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.



Схематическое представление CIS-сенсора


CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, таким образом, сканер, в котором используется контактный сенсор, всегда будет намного тоньше своего CCD-собрата. К тому же, такие аппараты славятся низким энергопотреблением; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.
Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Другими словами, положив на планшет такого сканера толстую книгу, получишь скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом. У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата. Однако с другой стороны, именно оптика обеспечивает очевидный выигрыш в качестве. Замечу, требования к оптике очень высоки, поэтому слухи, что в некоторых моделях сканеров применяются, де, "пластмассовые зеркала" сильно преувеличены, если не сказать "вымышлены". ;)
В плане разрешающей способности CIS-сканеры также не конкурент CCD. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено, если не ошибаюсь, пока что 1200 dpi. Но, в общем-то, сбрасывать со щитов CIS-технологию не стоит. Все технологии стремительно развивается. Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров. Оцифровать оригинал и перевести его в текстовый файл они могут где бы то ни было, не завязываясь с близостью электрических сетей, что позволяет закрыть глаза на ряд недостатков контактного сенсора. Собственно поэтому, ответить на вопрос "какой сканер лучше" можно исходя из ваших конкретных запросов.



Самый важный элемент сканера – CCD-матрица


На приведенной выше фотографии вы видите CCD-матрицу, которая представляется "большой микросхемой" со стеклянным окошком. Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Замечу, что общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера (об этом мы поговорим чуть позже). За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.



Вид сбоку на CCD-матрицу


На виде сбоку можно заметить два обычных винта, которые выполняют "деликатную" роль". С их помощью на этапе сборки сканера производилась точная юстировка матрицы (обратите также внимание на П-образные прорези в печатной плате на виде сверху), чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. Кстати, в случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".



Увеличенное изображение части CCD-матрицы (макросъемка
произведена цифровым фотоаппаратом Canon EOS D60)


На увеличенной фотографии CCD-матрицы достаточно хорошо видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов, о чем многие говорят, но мало кто представляет, как на самом деле это работает. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.



Объектив сканера на самом деле не так велик, как кажется на
фотографии

Корпус


Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости, которые можно сравнить с нервюрами и лонжеронами самолета.



Расположение основных функциональных узлов сканера


Немаловажным элементом корпуса является транспортный фиксатор, наличие которого призвано уберечь сканирующую каретку от повреждений при транспортировке сканера. Необходимо помнить, что перед включением любого сканера, оснащенного таким фиксатором, нужно осуществить его разблокировку. В противном случае, можно повредить механизмы аппарата. В принципе, производители акцентируют внимание покупателей на этот небольшой нюанс яркими наклейками с соответствующими предупреждениями.
Некоторые полагают, что уж корпус-то никак не может влиять на качество сканирования. Однако это далеко не так. Дело в том, что оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических). Мне не раз попадались модели, которые таким требованиям не соответствовали. Если вам предстоит покупка сканера, то я порекомендовал бы обратить на это внимание.
Также при покупке сканера обратите внимание на возможность отделения крышки планшета. Такое свойство аппарата особенно полезно при сканировании таких оригиналов, как толстые книги или журналы.
Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала. Также обратите внимание на наличие разметки по периметру планшета.

Блок управления

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители идут навстречу самым неподготовленным пользователям, и устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".



Кнопки быстрого сканирования – элемент, без которого можно обойтись



На приведенной выше фотографии видно, что каждой кнопке соответствует определенный значок. Типовые функции быстрого старта обычно подразумевают запуск стандартной операции сканирования, с выводом на принтер, с последующей отправкой по электронной почте, по факсу и т.п. Понятно, что для той или иной кнопки заданы конкретные параметры качества сканирования. Впрочем, нажатие на ту или иную кнопку сначала приводит к запуску на компьютере приложения (если таковых несколько), отвечающего за вызываемую операцию. Замечу, что далеко не все SOHO-сканеры снабжены собственным блоком управления, а в профессиональных аппаратах такие элементы отсутствуют и подавно.
Некоторые производители "грешат" тем, что исключают из драйвера сканера ряд настроек, которыми, по их мнению, не пользуются большинство рядовых пользователей. Так, например, в SOHO-сканерах Hewlett-Packard отсутствует возможность изменения gamma-коррекции, загрузки ICC-профилей и многого другого. Зато именно Hewlett-Packard как никто другой любит "баловать" пользователей наличием ряда кнопок быстрого сканирования.

Об источниках света

Абсолютно в каждом сканере используется свой осветитель. Так называется небольшой и мощный модуль, в задачу которого входит включение и выключение лампы сканера (или того, что эту лампу заменяет). В CIS-сканерах в качестве источников света применяют светодиодную линейку, за счет чего данный класс аппаратов потребляет так мало энергии.
В CCD-сканерах оригиналы стандартно освещает люминесцентная лампа с холодным катодом. Ее свет в тысячи раз ярче светодиодов. Но для того чтобы вызвать свечение газа внутри лампы нужно подать на ее вход очень высокое напряжение. Его вырабатывает отдельный блок, называемый инвертором.



Высоковольтный модуль необходим для питания лампы


Инвертор повышает напряжение с пяти Вольт до нескольких киловольт, а также преобразует постоянный ток в переменный.

Вообще различают три главных вида ламп, использующихся в сканерах:


ксеноновая газоразрядная лампа (Xenon Gas Discharge);
флуоресцентная лампа с горячим катодом (Hot Cathode Fluorescent);
флуоресцентная лампа с холодным катодом (Cold Cathode Fluorescent)

Однако в сканерах для дома и офиса по ряду причин используются лишь лампы с холодным катодом.



Лампа с холодным катодом


Лампа сканера закреплена на пластмассовом шасси сканирующей каретки непосредственно над отражателем. Сам отражатель имеет форму рефлектора (эффективного "собирателя" и отражателя света) в форме увеличительного зеркала. Свет от него усиливается, чтобы ярко осветить объект на планшете. Отразившись от оригинала на стекле, свет проходит сквозь щель шасси (на фотографии ее контур я выделил голубым цветом) и принимается первым, самым длинным зеркалом оптической системы.
Среди очевидных преимуществ лампы с холодным катодом можно отметить большой срок службы, который составляет 5 000 – 10 000 часов. По этой причине, кстати, в некоторых сканерах не используются отключение лампы после завершения операции сканирования. Кроме этого, лампы не требуют какого-то дополнительного охлаждения и очень дешевы при производстве. Из недостатков отмечу очень медленное включение. Типовое время разогрева лампы от 30 секунд до нескольких минут.
Лампа оказывает важное воздействие на результат сканирования. Даже при небольшом уходе характеристик источника света изменяется и падающий на приемную матрицу отраженный от оригинала световой поток. Отчасти поэтому и нужно столь длительное время разогрева лампы перед сканированием. Замечу, что некоторые драйверы позволяют уменьшить время разогрева, если качество оцифровки не так важно (например, при сканировании текстовой информации). Добавлю, чтобы как-то скомпенсировать уход характеристик лампы (а это неизбежно происходит при длительной эксплуатации аппарата), сканеры автоматически выполняют процедуру самокалибровки по черно-белой мишени, располагающейся внутри корпуса.



На фотографии хорошо заметно, как под воздействием света с течением
времени тускнеет корпусная пластмасса и калибровочная мишень


Исследуемый сканер не исключение. На приведенной фотографии хорошо видна цветовая мишень, по которой сканер подстраивает цвета перед сканированием, компенсируя "старение" лампы. Здесь видно также и то, что с течением времени тускнеет не только перманентно освещаемая лампой внутрикорпусная пластмасса, но и сама калибровочная мишень. Это, в свою очередь, приводит к уходу цветов и увеличению цветовых искажений.



Лампа с холодным катодом чем-то напоминает лампу дневного
света… только маленькую


При желании из инвертора и лампы с холодным катодом можно
соорудить настольную лампу


На фотографии вы видите нецелевое использование лампы сканера. ;) Модуль инвертора был подключен к стандартному компьютерному блоку питания, для чего к его плате были подпаяны проводки с переходничком. В принципе, если сюда приспособить какой-нибудь держатель, то выйдет довольно-таки неплохая и яркая настольная лампа.

Работа АЦП

Кто помогает процессору сканера "найти общий язык" с матрицей? Конечно же, аналого-цифровой преобразователь, занимающийся переводом аналоговых сигналов в цифровую форму. Этот интересный процесс можно представить следующим образом. Сначала АЦП как бы "взвешивает" входное напряжение, напоминая продавца в магазине, подбирающего набор стандартных гирек того же веса, что и товар. Затем, когда напряжение измеряно, АЦП представляет данные своему "боссу", то бишь процессору, но уже в виде цифр. И в результате все довольны.
Можно представить себя в роли процессора и поинтересоваться, что же происходит на выходе АЦП, при смене входного напряжения? Подадим, к примеру, на вход преобразователя 4 Вольта, потом 9 Вольт. На его выходе появятся следующие вариации цифр: сначала 00000100, затем 00001001. В двоичном коде это цифры 4 и 9. Количество же нулей и единиц, которыми АЦП выражает измеренное значение – это его разрядность, которая измеряется в битах. Такой параметр, как разрядность преобразователя крайне важен для сканера, ведь он характеризует точность измерения входного сигнала.
Сегодня на прилавках магазинов можно увидеть недорогие сканеры, в которых работают преобразователи с разрядностью от 24 до 48 бит. Теоретически всегда лучше выбирать сканер, у которого разрядность больше. При этом следует учитывать одну тонкость: иногда производители крупно пишут на коробках "48 bit", а где-нибудь в уголке мелким шрифтом уточняют: "software 48 bit, hardware 36 bit". Это означает, что большая красивая цифра не имеет ничего общего к точности установленного в сканере АЦП, а реальная разрядность в этом случае составляет 36 бит. Именно на нее и следует ориентироваться. Следует признать, что в домашней практике различия между результатами работы 36-ти и 42-х-битных сканеров практически незаметны (человеческий глаз способен различить примерно 24 бита цветовых оттенков, т.е. около 16,7 млн.). В нашем случае, разрядность преобразователя и глубина цвета – это одно и то же. Ведь преобразователь рассчитывает не что иное, как цвета точек, из которых складывается изображение. Чем больше разрядность преобразователя, тем достовернее сканер может передать цвет каждой точки изображения. Соответственно, тем больше изображение будет походить на оригинал.

Процессор

Современные сканеры оснащают специализированными процессорами. В число задач такого процессора входит согласование действий всех цепей и узлов, а также формирование данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на процессор возлагаются также функции контроллера интерфейса.
Список программных инструкций для процессора хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства. Содержимое микросхемы называется "микропрограммой" или "firmware". У некоторых профессиональных сканеров предусмотрена возможность ее обновления, но в недорогих моделях для дома и офиса это обычно не требуется.
Помимо микросхемы постоянной памяти в сканерах используется и оперативная память, играющая роль буфера (ее типовые значения – 1 или 2 Мбайт). Сюда направляется сканируемая информация, которая практически сразу передается на ПК. После отправки содержимого из памяти персональному компьютеру, процессор обнуляет буфер для формирования новой посылки. Замечу, что инструкции для процессора также заносятся в ячейки оперативной памяти, но уже самого процессора (для этого он оснащен несколькими килобайтами собственной "оперативки"). Организация его памяти построена по принципу конвейера, т.е. после выполнения инструкции, стоящей в очереди первой, ее место занимает вторая, а место последней – новая инструкция.
Объем оперативной памяти сканера ранее указывался производителями в технических спецификациях сканеров. Однако, т.к. данный параметр практически не сказывается на быстродействии аппарата, в современных сканерах он часто умалчивается. Умалчивается он и в том случае, если конкретный сканер использует некоторую область оперативной памяти самого компьютера, что реализуется средствами драйвера.

Контроллер интерфейса

За обмен информацией и командами между сканером и компьютером отвечает контроллер интерфейса. Как я отмечал выше, данная микросхема может отсутствовать в том случае, если процессор располагает интегрированным модулем контроллера. В эпоху "двушек" и "трешек" сканеры выпускались с интерфейсами SCSI, IEEE1284 (LPT) и даже с RS-232. Сегодняшний ассортимент SOHO-сканеров огранивается интерфейсами USB, FireWire и SCSI. Одно время ходили слухи о появлении Bluetooth-сканеров, но пока дальше слухов дело не пошло. Совершенно очевидно, что в аппаратах с разными интерфейсами установлены такие же разные контроллеры. Между собой они не совместимы, потому как "говорят на разных языках".



В нашем случае интерфейсная плата сочетает SCSI- и USB-порты, а также
располагает двумя гнездами для подключения дополнительных модулей

SCSI (Small Computer Systems Interface)

Сканеры с интерфейсом SCSI были наиболее распространены несколько лет назад. Надо признать, что эра SCSI-сканеров подходит (или уже подошла) к концу. Основная причина – появление высокоскоростных интерфейсов USB и FireWire, не требующих ни особой деликатности при подключении, ни дополнительных адаптеров. Среди достоинств SCSI-интерфейса можно выделить его высокую пропускную способность, а также возможность подключения до семи различных устройств на одну шину. Из основных недостатков SCSI – высокую стоимость организации интерфейса и необходимости задействования дополнительного контроллера.

USB (Universal Serial Bus)

Интерфейс USB получил самое широкое распространение благодаря его интеграции во все современные системные платы в качестве основного разъема для периферийных устройств. Сегодня абсолютное большинство сканеров для дома выпускается именно с USB-интерфейсом. Кроме того, группа CIS-сканеров получает необходимое питание по USB-порту, чем привлекает владельцев портативных компьютеров. Согласитесь, такое качество не реализуешь посредством SCSI.

FireWire (IEEE1394)

При выборе типа подключения, по крайней мере, для меня FireWire-интерфейс является более предпочтительным. FireWire представляет собой последовательный высокоскоростной интерфейс ввода/вывода, отличаясь от USB тем, что для обеспечения соединения он не требует управляющего контроллера. Организация его работы выполнена по схеме peer-to-peer. Собственно за счет этого и достигается более низкая (в сравнении с USB) загрузка центрального процессора.
В скором времени свет увидят периферийные устройства с новой модификацией этого интерфейса – FireWire 800 (IEEE1394b). Именно тогда он станет самым скоростным среди периферийных стандартов, которые когда-либо были разработаны.

Протяжный механизм

Основной подвижный модуль сканера – его сканирующая каретка. В нее входят оптический блок, с системой линз и зеркал, светочувствительная матрица, лампа с холодным катодом (если это CCD-сканер) и плата инвертора. К сканирующей каретке жестко закреплен зубчатый протяжный ремень, который приводит в движение шаговый двигатель аппарата.



Место крепления ремня к сканирующей каретке



Элементы протяжного механизма


За плотный контакт ремня с шестеренками отвечает специальная натяжная пружина, которая надевается непосредственно на него. Лафет со сканирующей кареткой перемещается по направляющим салазкам, вдоль корпуса аппарата (см.фото).

Двигатель



Шаговый двигатель


Шаговый электродвигатель (Step Motor) может поворачивать шпиндель в обе стороны совсем небольшими шажками. Из-за этой особенности всегда есть возможность переместить каретку сканера на строго определенное расстояние. Такой двигатель есть в каждом планшетном сканере. Он вращает редуктор (шестеренки, которые вы видите на фотографии) и приводит в движение каретку, в которой заключен оптический блок, лампа, и матрица. За выбор направления и скорости вращения отвечает специальная микросхема – контроллер двигателя. Точность перемещения каретки называют механическим разрешением по направлению "Y" (Y-direction).



Оптическое разрешение сканера – направление X, а его
механическое разрешение – направление Y


Вообще, оптическое разрешение определяется числом элементов линии матрицы, деленное на ширину рабочей области. Механическое – число шагов сканирующей каретки по направлению движения Y. В спецификациях к сканерам можно встретить обозначения, типа, "600х1200". Здесь вторая цифра и есть механическое разрешение, тогда как первая характеризует оптическое разрешение сканера. Различают также интерполированное разрешение, которое иногда на несколько порядков больше значений оптического, но никак не зависит от физического оснащения аппарата. Я бы назвал его "разрешением масштабирования". Функции интерполирования (увеличения оригинального изображения) исполняет программное обеспечение сканера. Ценность указываемых производителями значений интерполяции сомнительна – любое изображение можно с тем же успехом увеличить средствами Photoshop.



Внутренности двигателя



Редуктор


Сердечник двигателя с внешней стороны соединен зубчатой передачей, представляющей простейший редуктор. Его большая шестеренка и протягивает ремешок, к которому закреплена сканирующая каретка.

Блок питания



Блок питания сканера


Домашние или офисные сканеры потребляют не слишком много энергии от сети, поэтому в блоках питания SOHO-аппаратов не найти мощных элементов. Внутренний блок питания рассматриваемого в данной статье аппарата выдает напряжения 24 Вольт / 0.69 А, 12 Вольт / 0.15 А и 5 Вольт / 1 А. Т.к. для источника света – лампы с холодным катодом, требуется высокое напряжение в несколько киловольт, за ее питание отвечает отдельный блок, о котором я рассказывал чуть выше.

Дополнительные устройства

Для многих планшетных сканеров выпускаются сопутствующие дополнительные приспособления, в большинстве случаев приобретаемые отдельно. Из таковых можно отметить автоподатчик документов и адаптер для сканирования прозрачных оригиналов (слайд-адаптер).



Сканер с автоподатчиком документов представляет собой громоздкую
конструкцию


Автоподатчик бумаги требуется в тех случаях, когда приходится сканировать множество печатных листов стандартного формата. Удостовериться, что к вашему сканеру можно подключить автоподатчик достаточно просто. Для этого можно просто взглянуть на панель подключений и убедиться в наличии гнезда ADF (Automatic Document Feeder). Следует заметить, что автоподатчик документов всегда "привязан" к конкретной модели сканера, либо к серии моделей. Универсального податчика не существует! Причина заключается в том, что данное устройство управляется с интерфейсной платы сканера. Понятно, что работа податчика невозможна при отсутствии связи со сканером, поэтому при покупке будьте внимательны, и удостоверьтесь, что ваш сканер поддерживает работу с конкретным автоподатчиком.



Вид на прозрачное окошко автоподатчика документов с другой
стороны стекла


Работает автоподатчик следующим образом. После этапа автокалибровки и проверки готовности сканер позиционирует каретку перед прозрачным окном автоподатчика. Затем, с его входного лотка поочередно забираются листовые оригиналы, и при проходе через означенное окно они оцифровываются.
Слайд-адаптер представляет собой дополнительное приспособление, предназначенное для оцифровки прозрачных оригиналов (пленок, слайдов и негативов). Существуют два типа таких адаптеров: пассивный, который использует лампу сканера, и активный, просвечивающий прозрачный оригинал собственной лампой.
Активный слайд-адаптер оснащен собственным источником света, просвечивающим прозрачный оригинал. Некоторые модели таких слайд-адаптеров имеют подвижную каретку с источником света, которая приводится двигателем и протяжным механизмом. Источник света перемещается вдоль направляющей, согласно позиционирования каретки сканера. Собственная лампа сканера при этом отключается. Сегодня более распространены модели сканеров для дома и офиса без подвижных частей в модуле слайд-адаптера. Типичный пример – не так давно протестированный нашей тестовой лабораторией EPSON Perfection 3200 Photo . Его источник света встроен в крышку сканера и занимает всю ее полезную поверхность. Для согласования адаптера со сканером из крышки выходит провод с разъемом, подключающийся к специальному гнезду на задней панели аппарата (оно обозначается аббревиатурой XPA). Активизация лампы адаптера происходит автоматически при смене типа оригинала в управляющей программе, что дополнительно сообщается индикатором в крышке сканера. Прозрачные оригиналы устанавливаются в прилагаемые в комплекте шаблоны, которые поддерживают: ленту 35 мм пленки из 12 кадров, четыре 35 мм слайда вставленных в рамки, пленки 120/220 (6 х 9 см) / 4 х 5"". Ну а сами шаблоны кладутся на стекло сканера. Во время сканирования, поток света проходит сквозь прозрачный оригинал, и, попадая на вход оптической системы сканера, обрабатывается аналогичным (как и непрозрачный оригинал) образом. Понятно, что такие свойства сканера, как оптическое разрешение и глубина света при использовании слайд-адаптера не меняются, чего не скажешь о диапазоне оптических плотностей. Этот параметр сканера напрямую зависит от яркости источника света и времени экспонирования. Представить это можно так: чем темнее оригинал, тем меньше света он пропускает, тем дольше нужно времени, чтобы накопители CCD-матрицы собрали нужное количество заряда. Самый темный из прозрачных оригиналов – это рентгеновские пленки (до 3.6D). Чтобы получить с них качественный скан, нужен яркий источник света. Однако диапазон воспроизводимых оптических плотностей сканера отнюдь не определяется только лишь яркостью лампы. Главным образом он зависит от разрядности (или точности) аналого-цифрового преобразователя, качества оптической системы и способностей светочувствительной матрицы.
Пассивный слайд-модуль устроен проще, нежели активный. Такой адаптер использует в качестве источника света лампу самого сканера. Интенсивность светового потока в этом случае существенно ниже, чем в случае с активным адаптером. Соответственно, ниже и качество отсканированных изображений, которое вполне приемлемо, к примеру, для Web. Пассивные слайд-адаптеры также отличаются невысокой ценой.

Заключение

В общем-то, о сканере, как о сложнейшем электронном приборе можно рассказывать довольно долго, но все равно в рамках одной статьи невозможно передать всех интересных нюансов. Сегодня мы выяснили следующее: по каким причинам CCD-сканеры оцифровывают оригиналы гораздо качественнее, чем аппараты с контактным сенсором; почему важна разрядность преобразователя, и чем отличается оптическое разрешение от механического; какие бывают источники света и как они влияют на качество сканирования; как осуществляется взаимодействие электронных и механических частей сканера, и почему слайд-адаптеры подходят далеко не всем аппаратам. В общем, я постарался как можно в более доступной форме рассказать об особенностях современных SOHO-сканеров, и мне будет небезынтересно узнать ваше мнение об этой статье.

Немного отступлю, очки понятно для чего, а вот назначение респиратора я немного объясню. Дело в том, что Дремель работает с вращением до 33-х тысяч оборотов в минуту и пыль от работы с ним получается достаточно мелкой. И чтобы не вдыхать непонятно из чего состоящую пыль – нужен респиратор

Хорошенько загадив все рабочее место и сделав два куска пластика одинаковыми, приступаем к вырезанию отверстия под разъем питания при помощи ножа и карандаша.
Достаточно извазюкав карандашом верхнюю часть разъема питания, и приложив к нужному месту на пластике - получим примерный трафарет для вырезания.
Вырезав, прикладываем обе пластмасски к схеме, заранее вставив разъем питания. Далее смотрим как пройдет основной винт крепления через всю конструкцию, намечаем отверстие сначала с одной стороны, и, просунув в уже просверленное отверстие, намечаем и делаем второе отверстие.
Далее берем вторую пластину, там, где будет гайка. Продеваем и закручиваем винт с гайкой на ней. Затем гайку с небольшим усилием, при помощи горячего паяльника, вдавливаем в пластик пока она не перестанет выступать. Охлаждаем и выкручиваем винт.
Берем обе крышки нашей коробочки и с внутренней стороны делаем небольшие пассики примерно миллиметр на миллиметр, туда будут вставлены ребра жесткости, так же являющиеся декоративными заглушками закрывающие края схемы питания.
По большому счету почти все готово, осталось только сделать крепления для самой лампы.

Для этого берем все тот же белый пластик и вырезаем два маленьких прямоугольника, делаем сверлами отверстия, сначала маленьким, затем по больше, но отверстия не должны быть точно по центру т.к. тогда крепления не позволят лампе поворачиваться, сделать их нужно с небольшим смещением вниз. Далее закручиваем шурупчиками и наклеиваем двусторонний скотч на внешнее основание получившихся плоскостей крепления.

Вставляем разъем лампы в схему ее питания, а схему - в нашу самопальную коробочку и потихоньку закручиваем, но не до конца.
Теперь приступаем к изготовлению боковых стенок. Для этого намечаем в уже заготовленной "болваночной прокладке" место резки и выпиливаем стенку заранее немного большего размера. Прикладываем к коробке и смотрим, как она подходит. Когда размер понравится - можно делать вторую стенку.
Приложив готовую первую стенку как шаблон - подгоняем вторую по размеру.
Когда все готово и убраны все заусенцы - приступаем к сборке.
Берем схему питания, отрезаем разъем для внешнего подключения питания и припаиваем к нему наш разъем под блок питания. Заново собираем всю коробочку, заранее изолировав все оголенные контакты и почистив все следы возни. Скручиваем, и в конце, вставляем ребра жесткости, после чего закручиваем до такого состояния, чтобы коробочка не развалилась. Если не все хорошо держится, можно ребра жесткости, по краям, проклеить дополнительно суперклеем, дабы оно не развалилось, ни от падения, ни от рук.


У меня получилось не все хорошо, а именно: винт оказался за пределами крышки, так, что его пришлось спиливать.

Затем, на стороне гайки, клеим четыре небольших кусочка двустороннего скотча, дабы потом можно было его быстро и без проблем снять. Еще у меня не нашлось кнопки выключателя, она будет припаяна на шнур б.п. позже.

Если кому-то не хочется так возиться (мне просто надо было понять работу Дремеля с разными материалами), тот может найти любую подходящую коробочку и закрепить схему в ней.

Кто хочет иметь подсветку в корпусе, тому могу посоветовать подключиться к любой 12в линии с нужным сопротивлением.

Так же можно попробовать использовать лампу без ее отражателя (к тому же он не совсем отражатель, а скорее гаситель т.к. он не зеркальный, а бело-черный). Но для этого нужно быть предельно внимательным к концам лампы, так как впаянные в стекло провода достаточно толстые и их можно отломить, либо стекло может потрескаться в этих местах. На краях лампы есть прорезиненные специальные держатели, на них я бы порекомендовал обустраивать какие-то свои крепежи. Лампа проработав около 40 минут с моим б.п. практически не нагрела, ни отражатель, ни резинки по бокам нее. Если подаваемое напряжение на лампу будет больше 9в, то лампа, скорее всего, будет перегреваться, и, возможно, выйдет из строя. Если вы решите использовать ее без отражателя, хотя она и будет освещать все вокруг, но также будет светить и в глаза, что мне как-то не показалось мало.

Так же хочу предупредить о трансформаторе на схеме питания лампы. Не знаю, какой ток он выдает и что собой представляет, но если приблизить палец, или другой участок тела, близко к его контактам - возникает электрическая дуга, которая, например, на пальце у меня выжгла узорчик. Расстояние до контактов при этом может быть до двух миллиметров.
Током, конечно, не убьет, но маленький ожог получить можно.

Извиняюсь за качество картинок и видео, но что под рукой было))

В продолжении опишу как использовать мотор винчестера для его применения в виде вентилятора.
Сборку самодельной системы жидкостного охлаждения на своем примере.
Также самодельная корзина для пяти винчестеров из орг. стекла.

От добрых людей попал мне в руки вот такой достаточно престарелый сканер, Mustek 6000p, аппарат времен Windows 95 и больших белых пластиковых корпусов. Как раритет большой ценности он не представляет, но выбросить, не заглянув внутрь, жалко).

Собственно, все его электронное содержимое, корпус отправляется на помойку.

Осветитель из сканирующей каретки - обычная флуоресцентная лампа с холодным катодом (CCFL), подобные используются в подсветке LCD-матриц.

Плата с каретки. В левой части видим высоковольтный инвертор, пришло время попробовать зажечь лампу.

В левом углу - интегральный стабилизатор 7812, обозначенный как Q8, по нему легко понять, по каким дорожкам инвертор получает питание. На его входе при включении сканера около 14 вольт, но лампа не горит, как ее запустить? К участку платы с инвертором ведет не так уж и много дорожек от разъема, которым плата каретки соединяется с основной платой, поэтому предположим, что на транзисторе Q5 собран ключ, запускающий лампу.

Замкнем пинцетом резистор R3, соединенный с базой транзистора, на + питания, и… да будет свет!

Разобравшись, что к чему, обрежем все лишнее, впаяем резистор-перемычку между R3 и питанием…

… и штырьки для родного разъема питания принтера.

Получим вот такую аккуратную плату-инвертор, проверяем еще раз.

Для освещения рабочего места этого, конечно же, недостаточно, но можно сделать в каком-нибудь ящике подсветку по принципу лампы в холодильнике. В качестве донора корпуса неплохо подошла не менее престарелая мышь, ровесница сканеру. Выключателем же будет геркон с нормально замкнутыми контактами.

В собранном виде. Жаль, что кнопки не несут никакой функциональной нагрузки=)

Крепим лампу и корпус на двухсторонний скотч. На дверце - магнит от жесткого диска на том же скотче. Не особо эстетично, но задачу выполняет.

Для освещения небольшого пространства более чем достаточно

Внимательный читатель заметит, что на фото платы в корпусе мыши уже перемычка вместо стабилизатора - в нем больше нет необходимости, инвертор питается от домашнего сервера, который стоит на том же шкафу.

Вконтакте

Одноклассники

Четвертый тип - пленочные сканеры для оцифровки изображений с прозрачных оригиналов, другие их названия фильм-сканеры или слайд-сканеры . Устройство пленочных сканеров подобно устройству сканеров планшетных. Отличия в большей разрешающей способности (то есть в большем количестве светочувствительных элементов в сканирующей линейке) и в меньших физических размерах самих устройств. Для перевода аналоговых фотографий в цифровой формат этот тип устройств сканирования подходит лучше любых прочих.


Рис. 7.4.

Наконец, пятый тип сканеров - барабанные сканеры . В зависимости от конструкции (а именно, расположения сканирующей линейки и лампы подсветки внутри или снаружи барабана) они предназначены для сканирования непрозрачных оригиналов, пленок либо и того, и другого. Вместо предметного стекла в сканерах этого типа используется барабан , на поверхности которого закрепляются оригиналы. Сканирующая линейка и лампа подсветки установлены неподвижно . При сканировании барабан вращается с большой скоростью, а оцифровка проводится построчно при каждом обороте барабана с небольшим линейным сдвигом вдоль поверхности оригинала. Подобная конструкция позволяет добиться минимального шага сканирования и, соответственно, высокого разрешения и качества оцифровки. Барабанные сканеры применяются в области высококачественной полиграфии и стоят очень дорого, десятки и даже сотни тысяч долларов.

В фотолюбительской практике применяются планшетные и пленочные сканеры. Протяжные сканеры используются в системах безбумажного документооборота и в деловой сфере (хотя нет никаких препятствий к использованию их для оцифровки бумажных фотографий).

Рассмотрим подробней устройство планшетного сканера. В зависимости от конструкции сканирующей линейки планшетные сканеры подразделяются на две группы - устройства CCD , в которых в качестве светочувствительных элементов применяются полупроводниковые приборы с зарядовой связью, и устройства CIS ( Contact Image Sensor ), где светочувствительными элементами служат контактные комбинированные датчики.


Рис. 7.5.

В корпусе сканера CCD под предметным стеклом находится оптический блок , перемещаемый механизмом транспортировки вдоль поверхности оригинала. В оптическом блоке установлена люминесцентная лампа подсветки, спектральный состав светового потока которой максимально приближен к спектру солнечного света.

Отраженный от поверхности оригинала свет через систему отклоняющих зеркал попадает на поверхность полупроводникового светочувствительного элемента. Светочувствительные элементы располагаются на одной линии. Для обеспечения точной фиксации значений яркости отраженного светового луча (а процесс сканирования заключается именно в фиксации разности яркостей светового потока, отраженного исходным изображением) каждый светочувствительный элемент снабжен микрообъективом, фокусирующим отраженный свет на его поверхности. Физическое разрешение сканера определяется шагом расположения элементов на линейке. Этот шаг измеряется в пикселях на дюйм. Стандартный ряд значений разрешения планшетных сканеров выглядит так - 300, 600, 1200, 2400 пикселей на дюйм . То есть на каждом дюйме (2,54 см) сканирующей линейки расположены в ряд 300, 600, 1200 или 2400 светочувствительных элементов. Можно представить, какова степень миниатюризации современной электроники, причем речь идет о массовых недорогих устройствах.

Схематично процесс сканирования изображения можно описать следующим образом. Лампа подсветки освещает поверхность оригинала. Лучи света проходят сквозь полупрозрачное отклоняющее зеркало, отражаются от поверхности оригинала, возвращаются, отклоняются рабочей поверхностью полупрозрачного зеркала и, фокусируясь микрообъективом, попадают на светочувствительную поверхность полупроводникового элемента . На поверхности элемента накапливается электрический заряд, величина которого зависит от яркости засветки. Эти сигналы переменной величины усиливаются и передаются в аналого-цифровой преобразователь (АЦП ), где на их основе формируется цифровой код - последовательность логических нулей и единиц. Затем компьютерная программа -драйвер согласно цифровым данным восстанавливает изображение, идентичное изображению на поверхности оригинала.

Мы продолжаем серию публикаций «общеобразовательных» статей о принципах работы различных компонентов принтеров и МФУ. В этой статье речь пойдет о системе автоматической калибровки сканера.

Основным элементом сканеров современных МФУ является сканирующая линейка CCD (Couple Charge Device, Прибор с Зарядовой Связью, ПЗС). Соответственно, именно принципы работы приборов с зарядовой связью желательно знать, чтобы понимать, откуда «растут ноги» проблем, возникающих в сканерах.

Отметим, что в настоящее время в сканерах МФУ все чаще встречается «контактный датчик изображения» (Contact Image Sensor, CIS ), в основе которого лежит тот же самый принцип зарядовой связи. Грубо говоря, CIS это модуль, который в котором объединены: сканирующая линейка CCD с длиной, равной размеру сканируемого изображения; линейка короткофокусных линз, которая заменяет систему зеркал и линз; и лампа экспозиции, роль которой зачастую выполняет линейка светодиодов.

Теория работы приборов с зарядовой связью хорошо описана в статье на сайте StartCopy.net , поэтому повторять ее здесь не будем, но рекомендуем прочесть.

Основные тезисы, вытекающие из теории:

На текущем этапе развития технологий сканирующая линейка в любом сканере имеет отличия чувствительности отдельных пикселов. Это неизбежно.

Если не предпринимать никаких мер по коррекции отличий чувствительности пикселов, то сканируемое изображение обязательно будет «полосатым». Поэтому система автоматической калибровки используется во всех сканерах. Наиболее распространенные термины для обозначения этой системы – AGC (Auto Gain Control, Автоматическая регулировка уровня) и Shading Correction (Теневая коррекция).

Наличие системы автоматической калибровки, помимо решения основной задачи коррекции разной чувствительности пикселов, решает и другие задачи:

  • Не нужно управлять яркостью свечения лампы экспозиции. В определенном диапазоне система может компенсировать избыточно или недостаточно яркий свет лампы. Соответственно, упрощается схема управления лампой, а такое понятие как «регулировка яркости лампы экспозиции», которое в аналоговых машинах было одним из ключевых, становится ненужным и заменяется на цифровую обработку выходного сигнала сканера.
  • Не нужно иметь лампу с равномерной яркостью по всей длине. Система может компенсировать разницу яркости точно так же, как и разницу чувствительности пикселов. Это позволяет использовать линейку светодиодов в качестве лампы.
  • Система может компенсировать старение лампы, и даже пыль на зеркалах. До определенного предела, разумеется

Все, вроде бы, красиво и волшебно, но есть «слабое звено» — для правильной работы системы автоматической калибровки сканера необходима эталонная белая полоса с одинаковой белизной по всей своей длине. А в реальных условиях эксплуатации эта полоса местами загрязняется и теряет свою белизну. Это приводит к тому, что для пикселей линейки CCD, на которые проецируется уже совсем не белый участок калибровочной полосы, система выставляет избыточную коррекцию – изображение осветляется.

Практические аспекты, связанные со сканером:

Если вы чистите оптику сканера, то не забывайте почистить и белую калибровочную полоску. Она играет очень важную роль в работоспособности системы калибровки.

Типичное положение белой полосы

Несмотря на то, что система автоматической калибровки способна компенсировать загрязнение зеркал и линз, их тоже нужно тщательно чистить:). Как минимум, чтобы значения коррекции не выходили за диапазон, в котором система работает правильно. Для очистки зеркал и линз в большинстве случаев достаточно сухой безворсовой салфетки. Если грязь сухой салфеткой не оттирается, то лучше воздержаться от применения «ядреной химии» и попробовать сначала «мягкие» очистители оптики типа “ScreenClene” от Katun.

Полосы осветленного изображения на копиях, параллельные ходу движения каретки сканера, при нормальных отпечатках в режиме принтера, почти однозначно указывают на то, что белая калибровочная полоса местами перестала быть белой. Очистите ее и всю остальную оптику.

Целиком бледная копия при нормальных отпечатках в режиме принтера может иметь несколько причин:

  • Белая полоска в сканере перестала быть белой по всей длине.
  • Загрязнение оптики привело к тому, что увеличившиеся значения коррекции, устанавливаемые системой калибровки, стали неточными, т.е. возникла перекомпенсация.
  • Кто-то накрутил пользовательские и/или сервисные настройки яркости изображения.
  • «Конструктора недосмотрели», т.е. микропрограммное обеспечение машины имеет неточный алгоритм обработки сканированного изображения, осветляющий отпечаток. К сожалению, такие случаи нередки.

Лечение такой бледноты простое и банальное – проверить установки машины, очистить белую полоску, очистить все зеркала и линзы, включая те, до которых добраться нелегко.

Иногда загрязнение оптики и белой полосы приводит к тому, что машина, будучи не в состоянии выставить адекватные значения коррекции выдает ошибку сканера (ошибка AGC, ошибка лампы экспозиции, «прогрев сканера» и т.п.). При появлении этих ошибок не спешите сходу менять CCD-модуль, как того зачастую требует сервис-мануал. Уже неоднократно упомянутая тщательная очистка всего и вся в сканере спасает от этих ошибок довольно часто, хотя, естественно, и не всегда.

Некоторые машины имеют возможность регулировки положения каретки сканера под белой полосой во время автокалибровки. Эта регулировка бывает полезной в тех случаях, когда на полосе есть несмываемое повреждение или загрязнение, которое не занимает всю ширину полосы.

И последнее – винты, которые крепят линейку CCD, линзу и некоторые другие детали сканирующего модуля, почти всегда закрашены краской. Это сделано не из-за избытка краски на производстве:) а означает, что не нужно откручивать эти винты, даже если очень хочется. Вероятность того, что после отвинчивания/завинчивания винтов модуль нормально заработает, очень невысока.