Olap запросы. OLAP системы

В цикле статей «Введение в базы данных», публиковавшемся в последнее время (см. КомпьютерПресс №3’2000 - 3’2001), мы обсуждали различные технологии и программные средства, применяемые при создании информационных систем - настольные и серверные СУБД, средства проектирования данных, средства разработки приложений, а также Business Intelligence - средства анализа и обработки данных масштаба предприятия, которые в настоящее время становятся все более популярными в мире, в том числе и в нашей стране. Отметим, однако, что вопросы применения средств Business Intelligence и технологии, используемые при создании приложений такого класса, в отечественной литературе пока еще освещены недостаточно. В новом цикле статей мы попробуем восполнить этот пробел и рассказать о том, что представляют собой технологии, лежащие в основе подобных приложений. В качестве примеров реализации мы будем использовать в основном OLAP-технологии фирмы Microsoft (главным образом Analysis Services в Microsoft SQL Server 2000), но надеемся, что основная часть материала будет полезна и пользователям других средств.

Первая статья в данном цикле посвящена основам OLAP (On-Line Analytical Processing) - технологии многомерного анализа данных. В ней мы рассмотрим концепции хранилищ данных и OLAP, требования к хранилищам данных и OLAP-средствам, логическую организацию OLAP-данных, а также основные термины и понятия, применяемые при обсуждении многомерного анализа.

Что такое хранилище данных

Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т.п. Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются - системы поддержки принятия решений.

Принять любое управленческое решение невозможно не обладая необходимой для этого информацией, обычно количественной. Для этого необходимо создание хранилищ данных (Data warehouses), то есть процесс сбора, отсеивания и предварительной обработки данных с целью предоставления результирующей информации пользователям для статистического анализа (а нередко и создания аналитических отчетов).

Ральф Кимбалл (Ralph Kimball), один из авторов концепции хранилищ данных, описывал хранилище данных как «место, где люди могут получить доступ к своим данным» (см., например, Ralph Kimball, «The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses», John Wiley & Sons, 1996 и «The Data Webhouse Toolkit: Building the Web-Enabled Data Warehouse», John Wiley & Sons, 2000). Он же сформулировал и основные требования к хранилищам данных:

  • поддержка высокой скорости получения данных из хранилища;
  • поддержка внутренней непротиворечивости данных;
  • возможность получения и сравнения так называемых срезов данных (slice and dice);
  • наличие удобных утилит просмотра данных в хранилище;
  • полнота и достоверность хранимых данных;
  • поддержка качественного процесса пополнения данных.

Удовлетворять всем перечисленным требованиям в рамках одного и того же продукта зачастую не удается. Поэтому для реализации хранилищ данных обычно используется несколько продуктов, одни их которых представляют собой собственно средства хранения данных, другие - средства их извлечения и просмотра, третьи - средства их пополнения и т.д.

Типичное хранилище данных, как правило, отличается от обычной реляционной базы данных. Во-первых, обычные базы данных предназначены для того, чтобы помочь пользователям выполнять повседневную работу, тогда как хранилища данных предназначены для принятия решений. Например, продажа товара и выписка счета производятся с использованием базы данных, предназначенной для обработки транзакций, а анализ динамики продаж за несколько лет, позволяющий спланировать работу с поставщиками, - с помощью хранилища данных.

Во-вторых, обычные базы данных подвержены постоянным изменениям в процессе работы пользователей, а хранилище данных относительно стабильно: данные в нем обычно обновляются согласно расписанию (например, еженедельно, ежедневно или ежечасно - в зависимости от потребностей). В идеале процесс пополнения представляет собой просто добавление новых данных за определенный период времени без изменения прежней информации, уже находящейся в хранилище.

И в-третьих, обычные базы данных чаще всего являются источником данных, попадающих в хранилище. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Что такое OLAP

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные . Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных (см. E.F. Codd, S.B. Codd, and C.T.Salley, Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, 1993). В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information - быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

  • предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это - ключевое требование OLAP);
  • возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Но прежде чем говорить о различных реализациях этой функциональности, давайте рассмотрим, что же представляют собой кубы OLAP с логической точки зрения.

Многомерные кубы

В данном разделе мы более подробно рассмотрим концепцию OLAP и многомерных кубов. В качестве примера реляционной базы данных, который мы будем использовать для иллюстрации принципов OLAP, воспользуемся базой данных Northwind, входящей в комплекты поставки Microsoft SQL Server или Microsoft Access и представляющей собой типичную базу данных, хранящую сведения о торговых операциях компании, занимающейся оптовыми поставками продовольствия. К таким данным относятся сведения о поставщиках, клиентах, компаниях, осуществляющих доставку, список поставляемых товаров и их категорий, данные о заказах и заказанных товарах, список сотрудников компании. Подробное описание базы данных Northwind можно найти в справочных системах Microsoft SQL Server или Microsoft Access - здесь за недостатком места мы его не приводим.

Для рассмотрения концепции OLAP воспользуемся представлением Invoices и таблицами Products и Categories из базы данных Northwind, создав запрос, в результате которого получим подробные сведения о всех заказанных товарах и выписанных счетах:

SELECT dbo.Invoices.Country, dbo.Invoices.City, dbo.Invoices.CustomerName, dbo.Invoices.Salesperson, dbo.Invoices.OrderDate, dbo.Categories.CategoryName, dbo.Invoices.ProductName, dbo.Invoices.ShipperName, dbo.Invoices.ExtendedPrice FROM dbo.Products INNER JOIN dbo.Categories ON dbo.Products.CategoryID = dbo.Categories.CategoryID INNER JOIN dbo.Invoices ON dbo.Products.ProductID = dbo.Invoices.ProductID

В Access 2000 аналогичный запрос имеет вид:

SELECT Invoices.Country, Invoices.City, Invoices.Customers.CompanyName AS CustomerName, Invoices.Salesperson, Invoices.OrderDate, Categories.CategoryName, Invoices.ProductName, Invoices.Shippers.CompanyName AS ShipperName, Invoices.ExtendedPrice FROM Categories INNER JOIN (Invoices INNER JOIN Products ON Invoices.ProductID = Products.ProductID) ON Categories.CategoryID = Products.CategoryID;

Этот запрос обращается к представлению Invoices, содержащему сведения обо всех выписанных счетах, а также к таблицам Categories и Products, содержащим сведения о категориях продуктов, которые заказывались, и о самих продуктах соответственно. В результате этого запроса мы получим набор данных о заказах, включающий категорию и наименование заказанного товара, дату размещения заказа, имя сотрудника, выписавшего счет, город, страну и название компании-заказчика, а также наименование компании, отвечающей за доставку.

Для удобства сохраним этот запрос в виде представления, назвав его Invoices1. Результат обращения к этому представлению приведен на рис. 1 .

Какие агрегатные данные мы можем получить на основе этого представления? Обычно это ответы на вопросы типа:

  • Какова суммарная стоимость заказов, сделанных клиентами из Франции?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции и доставленных компанией Speedy Express?
  • Какова суммарная стоимость заказов, сделанных клиентами из Франции в 1997 году и доставленных компанией Speedy Express?

Переведем эти вопросы в запросы на языке SQL (табл. 1).

Результатом любого из перечисленных выше запросов является число. Если в первом из запросов заменить параметр ‘France’ на ‘Austria’ или на название иной страны, можно снова выполнить этот запрос и получить другое число. Выполнив эту процедуру со всеми странами, мы получим следующий набор данных (ниже показан фрагмент):

Country SUM (ExtendedPrice)
Argentina 7327.3
Austria 110788.4
Belgium 28491.65
Brazil 97407.74
Canada 46190.1
Denmark 28392.32
Finland 15296.35
France 69185.48
Germany 209373.6

Полученный набор агрегатных значений (в данном случае - сумм) может быть интерпретирован как одномерный набор данных. Этот же набор данных можно получить и в результате запроса с предложением GROUP BY следующего вида:

SELECT Country, SUM (ExtendedPrice) FROM invoices1 GROUP BY Country

Теперь обратимся ко второму из приведенных выше запросов, который содержит два условия в предложении WHERE. Если выполнять этот запрос, подставляя в него все возможные значения параметров Country и ShipperName, мы получим двухмерный набор данных следующего вида (ниже показан фрагмент):

ShipperName
Country Federal Shipping Speedy Express United Package
Argentina 1 210.30 1 816.20 5 092.60
Austria 40 870.77 41 004.13 46 128.93
Belgium 11 393.30 4 717.56 17 713.99
Brazil 16 514.56 35 398.14 55 013.08
Canada 19 598.78 5 440.42 25 157.08
Denmark 18 295.30 6 573.97 7 791.74
Finland 4 889.84 5 966.21 7 954.00
France 28 737.23 21 140.18 31 480.90
Germany 53 474.88 94 847.12 81 962.58

Такой набор данных называется сводной таблицей (pivot table) или кросс-таблицей (cross table, crosstab). Создавать подобные таблицы позволяют многие электронные таблицы и настольные СУБД - от Paradox для DOS до Microsoft Excel 2000. Вот так, например, выглядит подобный запрос в Microsoft Access 2000:

TRANSFORM Sum(Invoices1.ExtendedPrice) AS SumOfExtendedPrice SELECT Invoices1.Country FROM Invoices1 GROUP BY Invoices1.Country PIVOT Invoices1.ShipperName;

Агрегатные данные для подобной сводной таблицы можно получить и с помощью обычного запроса GROUP BY:

SELECT Country,ShipperName, SUM (ExtendedPrice) FROM invoices1 GROUP BY COUNTRY,ShipperName Отметим, однако, что результатом этого запроса будет не сама сводная таблица, а лишь набор агрегатных данных для ее построения (ниже показан фрагмент):

Country ShipperName SUM (ExtendedPrice)
Argentina Federal Shipping 845.5
Austria Federal Shipping 35696.78
Belgium Federal Shipping 8747.3
Brazil Federal Shipping 13998.26

Третий из рассмотренных выше запросов имеет уже три параметра в условии WHERE. Варьируя их, мы получим трехмерный набор данных (рис. 2).

Ячейки куба, показанного на рис. 2 , содержат агрегатные данные, соответствующие находящимся на осях куба значениям параметров запроса в предложении WHERE.

Можно получить набор двухмерных таблиц с помощью сечения куба плоскостями, параллельными его граням (для их обозначения используют термины cross-sections и slices).

Очевидно, что данные, содержащиеся в ячейках куба, можно получить и с помощью соответствующего запроса с предложением GROUP BY. Кроме того, некоторые электронные таблицы (в частности, Microsoft Excel 2000) также позволяют построить трехмерный набор данных и просматривать различные сечения куба, параллельные его грани, изображенной на листе рабочей книги (workbook).

Если в предложении WHERE содержится четыре или более параметров, результирующий набор значений (также называемый OLAP-кубом) может быть 4-мерным, 5-мерным и т.д.

Рассмотрев, что представляют собой многомерные OLAP-кубы, перейдем к некоторым ключевым терминам и понятиям, используемым при многомерном анализе данных.

Некоторые термины и понятия

Наряду с суммами в ячейках OLAP-куба могут содержаться результаты выполнения иных агрегатных функций языка SQL, таких как MIN, MAX, AVG, COUNT, а в некоторых случаях - и других (дисперсии, среднеквадратичного отклонения и т.д.). Для описания значений данных в ячейках используется термин summary (в общем случае в одном кубе их может быть несколько), для обозначения исходных данных, на основе которых они вычисляются, - термин measure, а для обозначения параметров запросов - термин dimension (переводимый на русский язык обычно как «измерение», когда речь идет об OLAP-кубах, и как «размерность», когда речь идет о хранилищах данных). Значения, откладываемые на осях, называются членами измерений (members).

Говоря об измерениях, следует упомянуть о том, что значения, наносимые на оси, могут иметь различные уровни детализации. Например, нас может интересовать суммарная стоимость заказов, сделанных клиентами в разных странах, либо суммарная стоимость заказов, сделанных иногородними клиентами или даже отдельными клиентами. Естественно, результирующий набор агрегатных данных во втором и третьем случаях будет более детальным, чем в первом. Заметим, что возможность получения агрегатных данных с различной степенью детализации соответствует одному из требований, предъявляемых к хранилищам данных, - требованию доступности различных срезов данных для сравнения и анализа.

Поскольку в рассмотренном примере в общем случае в каждой стране может быть несколько городов, а в городе - несколько клиентов, можно говорить об иерархиях значений в измерениях. В этом случае на первом уровне иерархии располагаются страны, на втором - города, а на третьем - клиенты (рис. 3).

Отметим, что иерархии могут быть сбалансированными (balanced), как, например, иерархия, представленная на рис. 3 , а также иерархии, основанные на данных типа «дата-время», и несбалансированными (unbalanced). Типичный пример несбалансированной иерархии - иерархия типа «начальник-подчиненный» (ее можно построить, например, используя значения поля Salesperson исходного набора данных из рассмотренного выше примера), представлен на рис. 4 .

Иногда для таких иерархий используется термин Parent-child hierarchy.

Существуют также иерархии, занимающие промежуточное положение между сбалансированными и несбалансированными (они обозначаются термином ragged - «неровный»). Обычно они содержат такие члены, логические «родители» которых находятся не на непосредственно вышестоящем уровне (например, в географической иерархии есть уровни Country, City и State, но при этом в наборе данных имеются страны, не имеющие штатов или регионов между уровнями Country и City; рис. 5).

Отметим, что несбалансированные и «неровные» иерархии поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии, а в Microsoft OLAP Services 7.0 - только сбалансированные. Различным в разных OLAP-средствах может быть и число уровней иерархии, и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений.

Заключение

В данной статье мы ознакомились с основами OLAP. Мы узнали следующее:

  • Назначение хранилищ данных - предоставление пользователям информации для статистического анализа и принятия управленческих решений.
  • Хранилища данных должны обеспечивать высокую скорость получения данных, возможность получения и сравнения так называемых срезов данных, а также непротиворечивость, полноту и достоверность данных.
  • OLAP (On-Line Analytical Processing) является ключевым компонентом построения и применения хранилищ данных. Эта технология основана на построении многомерных наборов данных - OLAP-кубов, оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные.
  • Приложения с OLAP-функциональностью должны предоставлять пользователю результаты анализа за приемлемое время, осуществлять логический и статистический анализ, поддерживать многопользовательский доступ к данным, осуществлять многомерное концептуальное представление данных и иметь возможность обращаться к любой нужной информации.

Кроме того, мы рассмотрели основные принципы логической организации OLAP-кубов, а также узнали основные термины и понятия, применяемые при многомерном анализе. И наконец, мы выяснили, что представляют собой различные типы иерархий в измерениях OLAP-кубов.

В следующей статье данного цикла мы рассмотрим типичную структуру хранилищ данных, поговорим о том, что представляет собой клиентский и серверный OLAP, а также остановимся на некоторых технических аспектах многомерного хранения данных.

КомпьютерПресс 4"2001

Онлайн-аналитическая обработка, или OLAP - это эффективная технология обработки данных, в результате чего на основе огромных массивов всевозможных данных выводится итоговая информация. Это мощный продукт, который помогает получать доступ, извлекать и просматривать информацию на ПК, анализируя ее с разных точек зрения.

OLAP - это инструмент, который обеспечивает стратегическую позицию долгосрочного планирования и рассматривает базовую информацию оперативных данных на перспективу 5, 10 и более лет. Данные хранятся в базе с размерностью, которая является их атрибутом. Пользователи могут просматривать один и тот же набор данных с разными атрибутами, в зависимости от целей анализа.

История OLAP

OLAP не является новой концепцией и используется уже на протяжении десятилетий. По сути, происхождение технологии отслеживается еще с 1962 года. Но термин был придуман только в 1993 году автором базы данных Тедом Коддомом, который также установил 12 правил для продукта. Как и во многих других приложениях, концепция подвергалась нескольким этапам эволюции.

История самой OLAP-технологии восходит к 1970 году, когда были выпущены информационные ресурсы Express и первый Olap-сервер. Они были приобретены Oracle в 1995 году и впоследствии стали основой онлайн-аналитической обработки многомерного вычислительного механизма, который известный компьютерный бренд предоставлял в своей базе данных. В 1992 году еще один известный онлайн-аналитический продукт обработки Essbase был выпущен компанией Arbor Software (приобретенной Oracle в 2007 году).

В 1998 году Microsoft выпустила онлайн-аналитический сервер обработки данных MS Analysis Services. Это способствовало популярности технологии и побудило разработку других продуктов. Сегодня функционируют несколько всемирно известных поставщиков, предлагающих Olap-приложения, в том числе IBM, SAS, SAP, Essbase, Microsoft, Oracle, IcCube.

Онлайн-аналитическая обработка

OLAP - это инструмент, который позволяет принимать решения о планируемых событиях. Атипичный Olap-расчет может быть более сложным, чем просто агрегирование данных. Аналитические запросы в минуту (AQM) используются в качестве стандартного эталона для сравнения характеристик различных инструментов. Эти системы должны максимально скрывать пользователей от синтаксиса сложных запросов и обеспечивать согласованное время отклика для всех (независимо от того, насколько они сложны).

Существуют следующие основные характеристики OLAP:

  1. Многомерные представления данных.
  2. Поддержка сложных вычислений.
  3. Временная разведка.

Многомерное представление обеспечивает основу для аналитической обработки посредством гибкого доступа к корпоративным данным. Оно позволяет пользователям анализировать данные в любом измерении и на любом уровне агрегации.

Поддержка сложных вычислений является основой программного обеспечения OLAP.

Временная разведка используется для оценки эффективности любого аналитического приложения на протяжении определенного отрезка времени. Например, в этом месяце по сравнению с прошлым месяцем, в этом месяце по сравнению с тем же месяцем прошлого года.

Многомерная структура данных

Одной из основных характеристик онлайн-аналитической обработки является многомерная структура данных. Куб может иметь несколько измерений. Благодаря такой модели весь процесс интеллектуального OLAP-анализа является простым для менеджеров и руководителей, поскольку объекты, представленные в ячейках, являются бизнес-объектами реального мира. Кроме того, эта модель данных позволяет пользователям обрабатывать не только структурированные массивы, но и неструктурированные и полуструктурированные. Все это делает их особенно популярными для анализа данных и приложений BI.

Основные характеристики OLAP-систем:

  1. Используют многомерные методы анализа данных.
  2. Обеспечивают расширенную поддержку базы данных.
  3. Создают простые в использовании интерфейсы конечных пользователей.
  4. Поддерживают архитектуру клиент/сервер.

Одним из основных компонентов концепций OLAP является сервер на стороне клиента. Помимо агрегирования и предварительной обработки данных из реляционной базы, он предоставляет расширенные параметры расчета и записи, дополнительные функции, основные расширенные возможности запросов и другие функции.

В зависимости от примера приложения, выбранного пользователем, доступны различные модели данных и инструменты, включая оповещение в реальном времени, функцию для применения сценариев «что, если», оптимизацию и сложные OLAP-отчеты.

Кубическая форма

В основе концепции лежит кубическая форма. Расположение данных в ней показывает, как OLAP придерживается принципа многомерного анализа, в результате чего создается структура данных, предназначенная для быстрого и эффективного анализа.

Куб OLAP также называется «гиперкубом». Он описывается как состоящий из числовых фактов (мер), классифицированных по фасетам (измерениям). Размеры относятся к атрибутам, которые определяют бизнес-проблему. Проще говоря, измерение - это метка, описывающая меру. Например, в отчетах о продажах мерой будет объем продаж, а размеры будут включать период продаж, продавцов, продукт или услугу, а также регион продаж. В отчетности по производственным операциям мерой могут быть общие производственные затраты и единицы продукции. Габаритами будут дата или время производства, этап производства или фаза, даже работники, вовлеченные в производственный процесс.

OLAP-куб данных является краеугольным камнем системы. Данные в кубе организованы с использованием либо звезды, либо схемы снежинок. В центре есть таблица фактов, содержащая агрегаты (меры). Она связана с рядом таблиц измерений, содержащих информацию о мерах. Размеры описывают, как эти меры могут быть проанализированы. Если куб содержит более трех измерений, его часто называют гиперкубом.

Одной из основных функций, принадлежащих кубу, является его статический характер, который подразумевает, что куб не может быть изменен после его разработки. Следовательно, процесс сборки куба и настройки модели данных является решающим шагом на пути к соответствующей обработке данных в архитектуре OLAP.

Объединение данных

Использование агрегаций является основной причиной, по которой запросы обрабатываются намного быстрее в OLAP-инструментах (по сравнению с OLTP). Агрегации представляют собой сводки данных, которые были предварительно рассчитаны во время их обработки. Все члены, хранящиеся в OLAP таблицах измерений, определяют запросы, которые куб может получить.

В кубе скопления информации хранятся в ячейках, координаты которых задаются конкретными размерами. Количество агрегатов, которые может содержать куб, зависит от всех возможных комбинаций элементов измерения. Поэтому типичный куб в приложении может содержать чрезвычайно большое количество агрегатов. Предварительное вычисление будет выполнено только для ключевых агрегатов, которые распределяются по всему аналитическому кубу онлайн-аналитики. Это значительно сократит время, необходимое для определения любых агрегаций при выполнении запроса в модели данных.

Есть также два варианта, связанных с агрегациями, с помощью которых можно повысить производительность готового куба: создать агрегацию кеша возможностей и использовать агрегацию на основе анализа запросов пользователей.

Принцип работы

Обычно анализ оперативной информации, полученной из транзакций, может выполняться с использованием простой электронной таблицы (значения данных представлены в строках и столбцах). Это хорошо, учитывая двумерный характер данных. В случае OLAP есть отличия, что связано с многомерным массивом данных. Поскольку их часто получают из разных источников, электронная таблица не всегда может эффективно их обрабатывать.

Куб решает эту проблему, а также обеспечивает работу OLAP-хранилища данных логичным и упорядоченным образом. Бизнес собирает данные из многочисленных источников и представлен в разных форматах, таких как текстовые файлы, мультимедийные файлы, электронные таблицы Excel, базы данных Access и даже базы данных OLTP.

Все данные собираются в хранилище, наполняемом прямо из источников. В нем необработанная информация, полученная из OLTP и других источников, будет очищена от любых ошибочных, неполных и непоследовательных транзакций.

После очистки и преобразования информация будет храниться в реляционной базе данных. Затем она будет загружена на многомерный OLAP-сервер (или Olap-куб) для анализа. Конечные пользователи, отвечающие за бизнес-приложения, интеллектуальный анализ данных и другие бизнес-операции, получат доступ к необходимой им информации из Olap-куба.

Преимущества модели массива

OLAP - это инструмент, обеспечивающий быструю производительность запросов, которая достигается благодаря оптимизированному хранению, многомерному индексированию и кешированию, что относится к значительным преимуществам системы. Кроме того, преимуществами являются:

  1. Меньший размер данных на диске.
  2. Автоматизированное вычисление агрегатов более высокого уровня данных.
  3. Модели массива обеспечивают естественную индексацию.
  4. Эффективное извлечение данных достигается за счет предварительной структуризации.
  5. Компактность для наборов данных с низкой размерностью.

К недостаткам OLAP относится тот факт, что некоторые решения (шаг обработки) могут быть довольно продолжительным, особенно при больших объемах информации. Обычно это исправляется путем выполнения только инкрементной обработки (изучаются данные, которые были изменены).

Основные аналитические операции

Свертка (roll-up/drill-up) также известна как «консолидация». Свертывание включает в себя сбор всех данных, которые могут быть получены, и вычисление всех в одном или нескольких измерениях. Чаще всего это может потребовать применения математической формулы. В качестве OLAP-примера можно рассмотреть розничную сеть с торговыми точками в разных городах. Чтобы определить модели и предвидеть будущие тенденции продаж, данные о них из всех точек «свернуты» в основной отдел продаж компании для консолидации и расчета.

Раскрытие (drill-down). Это противоположность свертыванию. Процесс начинается с большого набора данных, а затем разбивается на его меньшие части, тем самым позволяя пользователям просматривать детали. В примере с розничной сетью аналитик будет анализировать данные о продажах и просматривать отдельные бренды или продукты, которые считаются бестселлерами в каждой из торговых точек в разных городах.

Сечение (Slice and dice). Это процесс, когда аналитические операции включают в себя два действия: вывести определенный набор данных из OLAP-куба («разрезающий» аспект анализа) и просматривать его с разных точек зрения или углов. Это может произойти, когда все данные торговых точек получены и введены в гиперкуб. Аналитик вырезает из OLAP Cube набор данных, относящихся к продажам. Далее он будет просмотрен при анализе продаж отдельных единиц в каждом регионе. В это время другие пользователи могут сосредоточиться на оценке экономической эффективности продаж или оценке эффективности маркетинговой и рекламной кампании.

Поворот (Pivot). В нем поворачивают оси данных, чтобы обеспечить замену представления информации.

Разновидности баз данных

В принципе, это типичный OLAP-куб, который реализует аналитическую обработку многомерных данных с помощью OLAP Cube или любого куба данных, чтобы аналитический процесс мог добавлять размеры по мере необходимости. Любая информация, загружаемая в многомерную базу данных, будет храниться или архивироваться и может быть вызвана, когда потребуется.

Значение

Реляционная OLAP (ROLAP)

ROLAP - это расширенная СУБД вместе с многомерным отображением данных для выполнения стандартной реляционной операции

Многомерный OLAP (MOLAP)

MOLAP - реализует работу в многомерных данных

Гибридная онлайн-аналитическая обработка (HOLAP)

В подходе HOLAP агрегированные итоговые значения хранятся в многомерной базе данных, а подробная информация хранится в реляционной базе. Это обеспечивает как эффективность модели ROLAP, так и производительность модели MOLAP

Рабочий стол OLAP (DOLAP)

В Desktop OLAP пользователь загружает часть данных из базы данных локально или на свой рабочий стол и анализирует ее. DOLAP относительно дешевле для развертывания, поскольку он предлагает очень мало функциональных возможностей по сравнению с другими системами OLAP

Веб-OLAP (WOLAP)

Web OLAP является системой OLAP, доступной через веб-браузер. WOLAP - это трехуровневая архитектура. Он состоит из трех компонентов: клиент, промежуточное программное обеспечение и сервер базы данных

Мобильный OLAP

Мобильный OLAP помогает пользователям получать и анализировать данные OLAP с помощью своих мобильных устройств

Пространственный OLAP

SOLAP создается для облегчения управления как пространственными, так и непространственными данными в географической информационной системе (ГИС)

Существуют менее известные OLAP-системы или технологии, но эти являются основными, которые в настоящее время используют крупные корпорации, бизнес-структуры и даже правительство.

Инструменты OLAP

Инструменты для онлайн-аналитической обработки очень хорошо представлены в Интернете в виде как платных, так и бесплатных версий.

Наиболее популярные из них:

  1. Dundas BI из Dundas Data Visualization представляет собой основанную на браузере платформу для бизнес-аналитиков и визуализации данных, которая включает интегрированные информационные панели, средства OLAP-отчетов и аналитику данных.
  2. Yellowfin - платформа бизнес-аналитики, которая представляет собой единое интегрированное решение, разработанное для компаний разных отраслей и масштабов. Эта система настраивается для предприятий в области бухгалтерского учета, рекламы, сельского хозяйства.
  3. ClicData - это решение для бизнес-аналитиков (BI), предназначенное для использования в основном предприятиями малого и среднего бизнеса. Инструмент позволяет конечным пользователям создавать отчеты и информационные панели. Board создан для объединения бизнес-аналитики, управления корпоративной эффективностью и представляет собой полнофункциональную систему, которая обслуживает компании среднего и корпоративного уровня.
  4. Domo - это облачный пакет управления бизнесом, который объединяется с несколькими источниками данных, включая электронные таблицы, базы данных, социальные сети и любое существующее облачное или локальное программное решение.
  5. InetSoft Style Intelligence - это программная платформа для бизнес-аналитиков, которая позволяет пользователям создавать информационные панели, визуальную технологию анализа OLAP и отчеты с помощью механизма mashup.
  6. Birst от Infor Company представляет собой сетевое решение для бизнес-аналитиков и анализа, который объединяет идеи различных команд и помогает принимать обоснованные решения. Инструмент позволяет децентрализованным пользователям увеличить модель корпоративных команд.
  7. Halo - это комплексная система управления цепочками поставок и бизнес-аналитики, которая помогает в планировании бизнеса и прогнозировании запасов для управления цепочками поставок. Система использует данные из всех источников - больших, малых и промежуточных.
  8. Chartio - это облачное решение для бизнес-аналитиков, которое предоставляет учредителям, бизнес-группам, аналитикам данных и группам продуктов инструменты организации для повседневной работы.
  9. Exago BI - это веб-решение, предназначенное для внедрения в веб-приложения. Внедрение Exago BI позволяет компаниям всех размеров предоставлять своим клиентам специальную, оперативную и интерактивную отчетность.

Воздействие на бизнес

Пользователь найдет OLAP в большинстве бизнес-приложений в разных отраслях. Используется анализ не только бизнесом, но и другими заинтересованными сторонами.

Некоторые из его наиболее распространенных приложений включают в себя:

  1. Маркетинговый OLAP-анализ данных.
  2. Финансовую отчетность, которая охватывает продажи и расходы, составление бюджета и финансовое планирование.
  3. Управление бизнес-процессами.
  4. Анализ продаж.
  5. Маркетинг баз данных.

Отрасли продолжают расти, а это означает, что вскоре пользователи увидят больше приложений OLAP. Многомерная адаптированная обработка обеспечивает более динамический анализ. Именно по этой причине эти OLAP-системы и технологии используются для оценки сценариев «что, если» и альтернативных бизнес-сценариев.

Целью курсовой работы является изучение технологии OLAP, понятие ее реализации и структуры.

В современном мире компьютерные сети и вычислительные системы позволяют анализировать и обрабатывать большие массивы данных.

Большой объем информации сильно усложняет поиск решений, но дает возможность получить намного точнее расчеты и анализ. Для решения такой проблемы существует целый класс информационных систем, выполняющих анализ. Такие системы называют системами поддержки принятия решений (СППР) (DSS, Decision Support System).

Для выполнения анализа СППР должна накапливать информацию, обладая средствами ее ввода и хранения. Всего можно выделить три основные задачи, решаемые в СППР:

· ввод данных;

· хранение данных;

· анализ данных.

Ввод данных в СППР осуществляется автоматически от датчиков, характеризующих состояние среды или процесса, или человеком-оператором.

Если ввод данных осуществляется автоматически от датчиков, то данные накапливаются по сигналу готовности, возникающему при появлении информации или путем циклического опроса. Если же ввод осуществляется человеком, то они должны предоставлять пользователям удобные средства для ввода данных, проверяющих их на правильность ввода, а так же выполнять необходимые вычисления.

При вводе данных одновременно несколькими операторами, необходимо решать проблемы модификации и параллельного доступа одних и тех же данных.

СППР предоставляет аналитику данные в виде отчетов, таблиц, графиков для изучения и анализа, именно поэтому такие системы обеспечивают выполнение функции поддержки принятия решений.

В подсистемах ввода данных, называемых OLTP (On-linetransactionprocessing), реализуется операционная обработка данных. Для их реализации используют обычные системы управления БД (СУБД).

Подсистема анализа может быть построена на основе:

· подсистемы информационно-поискового анализа на базе реляционных СУБД и статических запросов с использованием языка SQL;

· подсистемы оперативного анализа. Для реализации таких подсистем применяется технология оперативной аналитической обработки данных OLAP, использующая концепцию многомерного представления данных;

· подсистемы интеллектуального анализа. Данная подсистема реализует методы и алгоритмы DataMining .

С точки зрения пользователя, OLAP-системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Благодаря всему этому OLAP-системы являются решением с большими преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии, таких как, отчетов по продажам, различных форм бюджетов и других. OLAP-системы имеет большие плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

1.2 Определение OLAP -систем

Технология комплексного многомерного анализа данных получила название OLAP. OLAP - это ключевой компонент организации ХД.

OLAP-функциональность может быть реализована различными способами, как простейшими, такими как анализ данных в офисных приложениях, так и более сложными - распределенными аналитическими системами, основанными на серверных продуктах.

OLAP (On-LineAnalyticalProcessing) – технология оперативной аналитической обработки данных использующая средства и методы для сбора, хранения и анализа многомерных данных и целях поддержки процессов принятия решений.

Основное назначение OLAP-систем - поддержка аналитической деятельности, произвольных запросов пользователей-аналитиков. Целью OLAP-анализа является проверка возникающих гипотез.

OLAP (OnLine Analytical Processing) – это название не конкретного продукта, а целой технологии оперативной аналитической обработки, предполагающей анализ данных и получение отчетов. Пользователю предоставляется многомерная таблица, автоматически суммирующая данные в различных разрезах и позволяющая оперативно управлять вычислениями и формой отчета.

Хотя в некоторых изданиях аналитическую обработку называют и онлайновой, и интерактивной, однако прилагательное "оперативная" как нельзя более точно отражает смысл технологии OLAP. Разработка руководителем решений по управлению попадает в разряд областей наиболее ложно поддающихся автоматизации. Однако сегодня имеется возможность оказать помощь управленцу в разработке решений и, самое главное, значительно ускорить сам процесс разработки решений, их отбора и принятия.

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный набор данных, нередко называемый гиперкубом или метакубом, оси которого содержат параметры, а ячейки – зависящие от них агрегатные данные – причем храниться такие данные могут и в реляционных таблицах, но в данном случае речь идет о логической организации данных, а не о физической реализации их хранения.

Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации.

По измерениям в многомерной модели откладывают факторы, влияющие на деятельность предприятия (например: время, продукты, филиалы компании и т.п.). Полученный OLAP-куб затем наполняется показателями деятельности предприятия (цены, продажи, план, прибыли, бытки и т.п.). Необходимо отметить, что в отличие от геометрического куба грани ОLAP-куба не обязательно должны иметь один размер. Наполнение это может вестись как реальными данными оперативных систем, так и прогнозируемыми на основе исторических данных. Измерения гиперкуба могут носить сложный характер, быть иерархическими, между ними могут быть установлены отношения. В процессе анализа пользователь может менять точку зрения на данные (так называемая операция смены логического взгляда), тем самым, просматривая данные в различных разрезах и разрешая конкретные задачи. Над кубами могут выполняться различные операции, включая прогнозирование и условное планирование (анализ типа “что, если”).

Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных. Оперативная аналитическая обработка позволяет значительно упростить и ускорить процесс подготовки и принятия решений руководящим персоналом. Оперативная аналитическая обработка служит цели превращения данных в информацию. Она принципиально отличается от традиционного процесса поддержки принятия решений, основанного, чаще всего, на рассмотрении структурированных отчетов.


OLAP-технология относится к виду интеллектуального анализа и предполагает 12 принципов:

1. Концептуальное многомерное представление . Пользователь-аналитик видит мир предприятия многомерным по своей природе, соответственно и OLAP-модель должна быть многомерной в своей основе.

2. Прозрачность . Архитектура OLAP-системы должна быть открытой, позволяя пользователю, где бы он ни находился, связываться при помощи аналитического инструмента – клиента – с сервером.

3. Доступность . Пользователь-аналитик OLAP должен иметь возможность выполнять анализ, базирующийся на общей концептуальной схеме, содержащей данные всего предприятия в реляционной БД, также как и данные из старых наследуемых БД, на общих методах доступа и на общей аналитической модели. OLAP-система должна выполнять доступ только к действительно требующимся данным, а не применять общий принцип "кухонной воронки", который влечет ненужный ввод.

4. Постоянная производительность при разработке отчетов . При увеличении числа измерений или объема базы данных пользователь-аналитик не должен чувствовать существенного снижения производительности.

5. Клиент-серверная архитектура . Большинство данных, которые сегодня требуется подвергать оперативной аналитической обработке, содержатся на мэйнфреймах с доступом на пользовательские рабочие станции через ЛВС. Это означает, что OLAP-продукты должны быть способны работать в среде клиент-сервер.

6. Общая многомерность . Каждое измерение должно применяться безотносительно своей структуры и операционных способностей. Базовые структуры данных, формулы и форматы отчетов не должны смещаться в сторону какого-либо одного измерения.

7. Динамическое управление разреженными матрицами . Физическая схема OLAP-инструмента должна полностью адаптироваться к специфической аналитической модели для оптимального управления разреженными матрицами. Разреженность (измеряется в процентном отношении пустых ячеек ко всем возможным) – это одна из характеристик распространения данных.

8. Многопользовательская поддержка . OLAP-инструмент должен предоставлять возможности совместного доступа запроса и дополнения нескольких пользователей-аналитиков при условии сохранения целостности и безопасности.

9. Неограниченные перекрестные операции . Различные операции вследствие их иерархической природы могут представлять зависимые отношения в OLAP-модели, т. е. являются перекрестными. Их выполнение не должно требовать от пользователя-аналитика вновь определять эти вычисления и операции.

10. Интуитивная манипуляция данными . Взгляд пользователя- аналитика на измерения, определенный в аналитической модели, должен содержать всю необходимую информацию, чтобы выполнять действия с OLAP-моделью, т.е. они не должны требовать использования системы меню или иных множественных операций с пользовательским интерфейсом.

11. Гибкие возможности получения отчетов . Средства формирования отчетов должны представлять собой синтезируемые данные или информацию, следующую из модели данных в ее любой возможной ориентации. Это означает, что строки, столбцы или страницы отчета должны отображать несколько измерений OLAP-модели одновременно с возможностью показать любое подмножество элементов (значений), содержащихся в измерении, причем в любом порядке.

12. Неограниченная размерность и число уровней агрегации . Исследование о возможном числе необходимых измерений, требующихся в аналитической модели, показало, что одновременно пользователем- аналитиком может использоваться до 19 измерений. Отсюда вытекает рекомендация о числе измерений, поддерживаемой OLAP-системой. Более того, каждое из общих измерений не должно быть ограничено по числу определяемых пользователем-аналитиком уровней агрегации.

В качестве специализированных OLAP-систем, предлагаемых в настоящее время на рынке, можно указать CalliGraph, Business Intelligence.

Для решения простых задач анализа данных возможно использовать бюджетное решение – офисные приложения Excel и Access компании Microsoft, которые содержат элементарные средства OLAP-технологии, позволяющие создавать сводные таблицы и строить на их основе различные отчеты.

В 1993 году основоположник реляционного подхода к построению баз данных Эдгар Кодд с партнерами (Edgar Codd, математик и стипендиат IBM), опубликовали статью, инициированную компанией "Arbor Software" (сегодня это известнейшая компания "Hyperion Solutions"), озаглавленную "Обеспечение OLAP (оперативной аналитической обработки) для пользователей-аналитиков", в которой сформулированы 12 особенностей технологии OLAP , которые впоследствии были дополнены еще шестью. Эти положения стали основным содержанием новой и очень перспективной технологии.

Основные особенности технологии OLAP (Basic):

  • многомерное концептуальное представление данных;
  • интуитивное манипулирование данными;
  • доступность и детализация данных;
  • пакетное извлечение данных против интерпретации;
  • модели анализа OLAP ;
  • архитектура "клиент-сервер" ( OLAP доступен с рабочего стола);
  • прозрачность (прозрачный доступ к внешним данным);
  • многопользовательская поддержка.

Специальные особенности ( Special ):

  • обработка неформализованных данных;
  • сохранение результатов OLAP : хранение их отдельно от исходных данных;
  • исключение отсутствующих значений;
  • обработка отсутствующих значений.

Особенности представления отчетов ( Report ):

  • гибкость формирования отчетов;
  • стандартная производительность отчетов;
  • автоматическая настройка физического уровня извлечения данных.

Управление измерениями ( Dimension ):

  • универсальность измерений;
  • неограниченное число измерений и уровней агрегации ;
  • неограниченное число операций между размерностями.

Исторически сложилось так, что сегодня термин " OLAP " подразумевает не только многомерный взгляд на данные со стороны конечного пользователя, но и многомерное представление данных в целевой БД. Именно с этим связано появление в качестве самостоятельных терминов "Реляционный OLAP" ( ROLAP ) и "Многомерный OLAP" ( MOLAP ).

OLAP -сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP - системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных и выполнять аналитические операции детализации, свертки , сквозного распределения, сравнения во времени одновременно по многим параметрам. Вся работа с OLAP -системой происходит в терминах предметной области и позволяет строить статистически обоснованные модели деловой ситуации.

Программные средства OLAP - это инструмент оперативного анализа данных , содержащихся в хранилище. Главной особенностью является то, что эти средства ориентированы на использование не специалистом в области информационных технологий, не экспертом-статистиком, а профессионалом в прикладной области управления - менеджером отдела, департамента, управления, и, наконец, директором. Средства предназначены для общения аналитика с проблемой, а не с компьютером . На рис. 6.14 показан элементарный OLAP -куб, позволяющий производить оценки данных по трем измерениям.

Многомерный OLAP -куб и система соответствующих математических алгоритмов статистической обработки позволяет анализировать данные любой сложности на любых временных интервалах.


Рис. 6.14.

Имея в своем распоряжении гибкие механизмы манипулирования данными и визуального отображения (рис. рис. 6.15 , рис. 6.16), менеджер сначала рассматривает с разных сторон данные, которые могут быть (а могут и не быть) связаны с решаемой проблемой.

Далее он сопоставляет различные показатели бизнеса между собой, стараясь выявить скрытые взаимосвязи; может рассмотреть данные более пристально, детализировав их, например, разложив на составляющие по времени, по регионам или по клиентам, или, наоборот, еще более обобщить представление информации, чтобы убрать отвлекающие подробности. После этого с помощью модуля статистического оценивания и имитационного моделирования строится несколько вариантов развития событий, и из них выбирается наиболее приемлемый вариант.


Рис. 6.15.

У управляющего компанией, например, может зародиться гипотеза о том, что разброс роста активов в различных филиалах компании зависит от соотношения в них специалистов с техническим и экономическим образованием. Чтобы проверить эту гипотезу, менеджер может запросить из хранилища и отобразить на графике интересующее его соотношение для тех филиалов, у которых за текущий квартал рост активов снизился по сравнению с прошлым годом более чем на 10%, и для тех, у которых повысился более чем на 25%. Он должен иметь возможность использовать простой выбор из предлагаемого меню. Если полученные результаты ощутимо распадутся на две соответствующие группы, то это должно стать стимулом для дальнейшей проверки выдвинутой гипотезы.

В настоящее время быстрое развитие получило направление, называемое динамическим моделированием (Dynamic Simulation ), в полной мере реализующее указанный выше принцип FASMI.

Используя динамическое моделирование, аналитик строит модель деловой ситуации, развивающуюся во времени, по некоторому сценарию. При этом результатом такого моделирования могут быть несколько новых бизнес-ситуаций, порождающих дерево возможных решений с оценкой вероятности и перспективности каждого.


Рис. 6.16.

В таблице 6.3 приведены сравнительные характеристики статического и динамического анализа.

Таблица 6.3.
Характеристика Статический анализ Динамический анализ
Типы вопросов Кто? Что? Сколько? Как? Когда? Где? Почему так? Что было бы, если…? Что будет, если…?
Время отклика Не регламентируется Секунды
Типичные операции работы с данными Регламентированный отчет, диаграмма, таблица, рисунок Последовательность интерактивных отчетов, диаграмм, экранных форм . Динамическое изменение уровней агрегации и срезов данных
Уровень аналитических требований Средний Высокий
Тип экранных форм В основном, определенный заранее, регламентированный Определяемый пользователем, есть возможности настройки
Уровень агрегации данных Детализированные и суммарные Определяется пользователем
"Возраст" данных Исторические и текущие Исторические, текущие и прогнозируемые
Типы запросов В основном, предсказуемые Непредсказуемые - от случаю к случаю
Назначение Регламентированная аналитическая обработка Многопроходный анализ, моделирование и построение прогнозов

Практически всегда задача построения аналитической системы для многомерного анализа данных - это задача построения единой, согласованно функционирующей информационной системы, на основе неоднородных программных средств и решений . И уже сам выбор средств для реализации ИС становится чрезвычайно сложной задачей. Здесь должно учитываться множество факторов, включая взаимную совместимость различных программных компонент , легкость их освоения, использования и интеграции, эффективность функционирования, стабильность и даже формы, уровень и потенциальную перспективность взаимоотношений различных фирм производителей.

OLAP применим везде, где есть задача анализа многофакторных данных. Вообще, при наличии некоторой таблицы с данными, в которой есть хотя бы одна описательная колонка и одна колонка с цифрами, OLAP -инструмент будет эффективным средством анализа и генерации отчетов. В качестве примера применения OLAP-технологии рассмотрим исследование результатов процесса продаж.

Ключевые вопросы "Сколько продано?", "На какую сумму продано?" расширяются по мере усложнения бизнеса и накопления исторических данных до некоторого множества факторов, или разрезов: "..в Санкт-Петербурге, в Москве, на Урале, в Сибири…", "..в прошлом квартале, по сравнению с нынешним", "..от поставщика А по сравнению с поставщиком Б…" и т. д.

Ответы на подобные вопросы необходимы для принятия управленческих решений: об изменении ассортимента, цен, закрытии и открытии магазинов, филиалов, расторжении и подписании договоров с дилерами, проведения или прекращения рекламных кампаний и т. д.

Если попытаться выделить основные цифры (факты) и разрезы (аргументы измерений), которыми манипулирует аналитик, стараясь расширить или оптимизировать бизнес компании, то получится таблица, подходящая для анализа продаж как некий шаблон, требующий соответствующей корректировки для каждого конкретного предприятия.

Время . Как правило, это несколько периодов: Год, Квартал, Месяц, Декада, Неделя, День. Многие OLAP -инструменты автоматически вычисляют старшие периоды из даты и вычисляют итоги по ним.

Категория товара . Категорий может быть несколько, они отличаются для каждого вида бизнеса: Сорт, Модель, Вид упаковки и пр. Если продается только один товар или ассортимент очень невелик, то категория не нужна.

Товар . Иногда применяются название товара (или услуги), его код или артикул. В тех случаях, когда ассортимент очень велик (а некоторые предприятия имеют десятки тысяч позиций в своем прайс-листе), первоначальный анализ по всем видам товаров может не проводиться, а обобщаться до некоторых согласованных категорий.

Регион . В зависимости от глобальности бизнеса можно иметь в виду Континент, Группа стран, Страна, Территория, Город, Район, Улица, Часть улицы. Конечно, если есть только одна торговая точка, то это измерение отсутствует.

Продавец . Это измерение тоже зависит от структуры и масштабов бизнеса. Здесь может быть: Филиал, Магазин, Дилер, Менеджер по продажам. В некоторых случаях измерение отсутствует, например, когда продавец не влияет на объемы сбыта, магазин только один и так далее.

Покупатель . В некоторых случаях, например, в розничной торговле , покупатель обезличен и измерение отсутствует, в других случаях информация о покупателе есть, и она важна для продаж. Это измерение может содержать название фирмы-покупателя или множество группировок и характеристик клиентов: Отрасль, Группа предприятий, Владелец и так далее.. Анализ структуры продаж для выявления важнейших составляющих в интересующем разрезе. Для этого удобно использовать, например, диаграмму типа "Пирог" в сложных случаях, когда исследуется сразу 3 измерения - "Столбцы". Например, в магазине "Компьютерная техника" за квартал продажи компьютеров составили $100000, фототехники -$10000, расходных материалов - $4500. Вывод: оборот магазина зависит в большой степени от продажи компьютеров (на самом деле, быть может, расходные материалы необходимы для продажи компьютеров, но это уже анализ внутренних зависимостей).

Анализ динамики ( регрессионный анализ - выявление трендов ). Выявление тенденций, сезонных колебаний. Наглядно динамику отображает график типа "Линия". Например, объемы продаж продуктов компании Intel в течение года падали, а объемы продаж Microsoft росли. Возможно, улучшилось благосостояние среднего покупателя, или изменился имидж магазина, а с ним и состав покупателей. Требуется провести корректировку ассортимента. Другой пример: в течение 3 лет зимой снижается объем продаж видеокамер.

Анализ зависимостей (корреляционный анализ). Сравнение объемов продаж разных товаров во времени для выявления необходимого ассортимента - "корзины". Для этого также удобно использовать график типа "Линия". Например, при удалении из ассортимента принтеров в течение первых двух месяцев обнаружилось падение продаж картриджей с порошком.